These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 11495227)
1. Optimization of a mathematical topological pattern for the prediction of antihistaminic activity. Duart MJ; García-Domenech R; Antón-Fos GM; Gálvez J J Comput Aided Mol Des; 2001 Jun; 15(6):561-72. PubMed ID: 11495227 [TBL] [Abstract][Full Text] [Related]
2. Application of a mathematical topological pattern of antihistaminic activity for the selection of new drug candidates and pharmacology assays. Duart MJ; García-Domenech R; Galvez J; Aleman PA; Martín-Algarra RV; Antón-Fos GM J Med Chem; 2006 Jun; 49(12):3667-73. PubMed ID: 16759109 [TBL] [Abstract][Full Text] [Related]
3. New potential antihistaminic compounds. Virtual combinatorial chemistry, computational screening, real synthesis, and pharmacological evaluation. Duart MJ; Antón-Fos GM; Alemán PA; Gay-Roig JB; González-Rosende ME; Gálvez J; García-Domenech R J Med Chem; 2005 Feb; 48(4):1260-4. PubMed ID: 15715494 [TBL] [Abstract][Full Text] [Related]
4. Use of molecular topology for the prediction of physico-chemical, pharmacokinetic and toxicological properties of a group of antihistaminic drugs. Duart MJ; Antón-Fos GM; de Julian-Ortiz JV; Gozalbes R; Gálvez J; García-Domenech R Int J Pharm; 2002 Oct; 246(1-2):111-9. PubMed ID: 12270614 [TBL] [Abstract][Full Text] [Related]
6. Optically active analogues of ebastine: synthesis and effect of chirality on their antihistaminic and antimuscarinic activity. Zhang MQ; Walczynski K; Ter Laak AM; Timmerman H Chirality; 1994; 6(8):631-41. PubMed ID: 7857774 [TBL] [Abstract][Full Text] [Related]
7. In silico ligand based design of indolylpiperidinyl derivatives as novel histamine H(1) receptor antagonists. Paliwal S; Singh S; Pal M Drug Discov Ther; 2012 Apr; 6(2):69-77. PubMed ID: 22622016 [TBL] [Abstract][Full Text] [Related]
8. Crystallographic and conformational studies on histamine H1-receptor antagonists. IV. On the stereochemical vector of antihistaminic activity. Borea PA; Bertolasi V; Gilli G Arzneimittelforschung; 1986 Jun; 36(6):895-9. PubMed ID: 2874816 [TBL] [Abstract][Full Text] [Related]
9. Effect of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl)-benzimida zole difumarate (KB-2413), a new antiallergic, on chemical mediators. Fukuda T; Morimoto Y; Iemura R; Kawashima T; Tsukamoto G; Ito K Arzneimittelforschung; 1984; 34(7):801-5. PubMed ID: 6149754 [TBL] [Abstract][Full Text] [Related]
11. A structure-activity relationship study of thiazole derivatives with H1-antihistamine activity. Brzezińska E; Stolarska J; Sobańska A Acta Pol Pharm; 2011; 68(5):677-86. PubMed ID: 21928712 [TBL] [Abstract][Full Text] [Related]
12. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity. Corcóstegui R; Labeaga L; Innerárity A; Berisa A; Orjales A Drugs R D; 2005; 6(6):371-84. PubMed ID: 16274260 [TBL] [Abstract][Full Text] [Related]
13. Design, synthesis and pharmacological screening of a series of N1-(substituted) aryl-5,7-dimethyl-2-(substituted)pyrido(2,3-d)-pyrimidin-4(3H)-ones as potential histamine H1-receptor antagonists. Suhagia BN; Chhabria MT; Makwana AG J Enzyme Inhib Med Chem; 2006 Dec; 21(6):681-91. PubMed ID: 17252940 [TBL] [Abstract][Full Text] [Related]
14. Antimycobacterial and H1-antihistaminic activity of 2-substituted piperidine derivatives. Weis R; Schweiger K; Faist J; Rajkovic E; Kungl AJ; Fabian WM; Schunack W; Seebacher W Bioorg Med Chem; 2008 Dec; 16(24):10326-31. PubMed ID: 18977145 [TBL] [Abstract][Full Text] [Related]
15. Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 1st communication: receptor selectivity, antihistaminic activity, and antiallergenic effects. Kreutner W; Hey JA; Anthes J; Barnett A; Young S; Tozzi S Arzneimittelforschung; 2000 Apr; 50(4):345-52. PubMed ID: 10800633 [TBL] [Abstract][Full Text] [Related]
16. Computer-aided design, synthesis, and biological evaluation of 5- substituted aminomethylenepyrimidine-2,4,6-triones as H₁ antihistaminic agents (Part2). Elbayaa RY Med Chem; 2014; 10(1):66-73. PubMed ID: 24016395 [TBL] [Abstract][Full Text] [Related]
17. Bioisosteric transformation of H1-antihistaminic benzimidazole derivatives. Iemura R; Hori M; Saito T; Ohtaka H Chem Pharm Bull (Tokyo); 1989 Oct; 37(10):2723-6. PubMed ID: 2575462 [TBL] [Abstract][Full Text] [Related]
18. Tricin from a malagasy connaraceous plant with potent antihistaminic activity. Kuwabara H; Mouri K; Otsuka H; Kasai R; Yamasaki K J Nat Prod; 2003 Sep; 66(9):1273-5. PubMed ID: 14510616 [TBL] [Abstract][Full Text] [Related]
19. Optical isomers of rocastine and close analogues: synthesis and H1 antihistaminic activity of its enantiomers and their structural relationship to the classical antihistamines. Sleevi MC; Cale AD; Gero TW; Jaques LW; Welstead WJ; Johnson AF; Kilpatrick BF; Demian I; Nolan JC; Jenkins H J Med Chem; 1991 Apr; 34(4):1314-28. PubMed ID: 1673158 [TBL] [Abstract][Full Text] [Related]
20. Effects of E-4716, a new antihistaminic with antiallergic properties, on chemical mediators induction of immunologic reactions. Gutiérrez B; Dordal A; Fort M; Galicia J; Farré AJ Methods Find Exp Clin Pharmacol; 1996; 18(6):397-406. PubMed ID: 8892269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]