BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 11495949)

  • 1. Ionic mechanisms underlying burst firing of layer III sensorimotor cortical neurons of the cat: an in vitro slice study.
    Nishimura Y; Asahi M; Saitoh K; Kitagawa H; Kumazawa Y; Itoh K; Lin M; Akamine T; Shibuya H; Asahara T; Yamamoto T
    J Neurophysiol; 2001 Aug; 86(2):771-81. PubMed ID: 11495949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons.
    Brumberg JC; Nowak LG; McCormick DA
    J Neurosci; 2000 Jul; 20(13):4829-43. PubMed ID: 10864940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons.
    Schwindt P; Crill W
    J Neurophysiol; 1999 Mar; 81(3):1341-54. PubMed ID: 10085360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex.
    Franceschetti S; Guatteo E; Panzica F; Sancini G; Wanke E; Avanzini G
    Brain Res; 1995 Oct; 696(1-2):127-39. PubMed ID: 8574660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker.
    Bal T; McCormick DA
    J Physiol; 1993 Aug; 468():669-91. PubMed ID: 8254530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro.
    Kim U; McCormick DA
    J Neurophysiol; 1998 Sep; 80(3):1222-35. PubMed ID: 9744934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):39-55. PubMed ID: 8783228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro.
    Schwindt PC; Spain WJ; Foehring RC; Stafstrom CE; Chubb MC; Crill WE
    J Neurophysiol; 1988 Feb; 59(2):424-49. PubMed ID: 3351569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic excitability of the burst firing neurons in cat sensorimotor cortex in vitro.
    Kitagawa H; Nishimura Y; Yamamoto T
    Brain Res; 1999 Sep; 842(1):101-8. PubMed ID: 10526100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons.
    Haghdoost-Yazdi H; Janahmadi M; Behzadi G
    Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro.
    Stafstrom CE; Schwindt PC; Chubb MC; Crill WE
    J Neurophysiol; 1985 Jan; 53(1):153-70. PubMed ID: 2579215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes.
    Schwindt PC; Spain WJ; Foehring RC; Chubb MC; Crill WE
    J Neurophysiol; 1988 Feb; 59(2):450-67. PubMed ID: 3351570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex.
    Schwindt PC; Spain WJ; Crill WE
    J Neurophysiol; 1992 Jan; 67(1):216-26. PubMed ID: 1313080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of carbachol-induced rhythmic bursting discharges in neurons from guinea pig lateral septum slices.
    Carette B
    J Neurophysiol; 1998 Sep; 80(3):1042-55. PubMed ID: 9744920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.