These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11495952)

  • 1. Mapping Pavlovian conditioning effects on the brain: blocking, contiguity, and excitatory effects.
    Jones D; Gonzalez-Lima F
    J Neurophysiol; 2001 Aug; 86(2):809-23. PubMed ID: 11495952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associative effects of Pavlovian differential inhibition of behaviour.
    Jones D; Gonzalez-Lima F
    Eur J Neurosci; 2001 Dec; 14(11):1915-27. PubMed ID: 11860486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic effects of blocking tone conditioning on the rat auditory system.
    Poremba A; Jones D; Gonzalez-Lima F
    Neurobiol Learn Mem; 1997 Sep; 68(2):154-71. PubMed ID: 9322258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network analysis of functional auditory pathways mapped with fluorodeoxyglucose: associative effects of a tone conditioned as a Pavlovian excitor or inhibitor.
    McIntosh AR; Gonzalez-Lima F
    Brain Res; 1993 Nov; 627(1):129-40. PubMed ID: 8293293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response.
    Barrett D; Shumake J; Jones D; Gonzalez-Lima F
    J Neurosci; 2003 Jul; 23(13):5740-9. PubMed ID: 12843278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance structural modeling.
    McIntosh AR; Gonzalez-Lima F
    J Neurophysiol; 1994 Oct; 72(4):1717-33. PubMed ID: 7823097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale functional connectivity in associative learning: interrelations of the rat auditory, visual, and limbic systems.
    Mcintosh AR; Gonzalez-Lima F
    J Neurophysiol; 1998 Dec; 80(6):3148-62. PubMed ID: 9862913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical conditioning modifies cytochrome oxidase activity in the auditory system.
    Poremba A; Jones D; Gonzalez-Lima F
    Eur J Neurosci; 1998 Oct; 10(10):3035-43. PubMed ID: 9786198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional network interactions between parallel auditory pathways during Pavlovian conditioned inhibition.
    McIntosh AR; Gonzalez-Lima F
    Brain Res; 1995 Jun; 683(2):228-41. PubMed ID: 7552359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain activity associated with fear renewal.
    Bruchey AK; Gonzalez-Lima F
    Eur J Neurosci; 2006 Dec; 24(12):3567-77. PubMed ID: 17229105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced metabolic capacity of the frontal cerebral cortex after Pavlovian conditioning.
    Bruchey AK; Gonzalez-Lima F
    Neuroscience; 2008 Mar; 152(2):299-307. PubMed ID: 18291593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. I. Activation of auditory nuclei.
    Gonzalez-Lima F; Scheich H
    Behav Brain Res; 1984 Dec; 14(3):213-33. PubMed ID: 6525243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rostral anterior cingulate cortex modulates the efficiency of amygdala-dependent fear learning.
    Bissière S; Plachta N; Hoyer D; McAllister KH; Olpe HR; Grace AA; Cryan JF
    Biol Psychiatry; 2008 May; 63(9):821-31. PubMed ID: 18155183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prefrontal-limbic Functional Connectivity during Acquisition and Extinction of Conditioned Fear.
    Barrett DW; Gonzalez-Lima F
    Neuroscience; 2018 Apr; 376():162-171. PubMed ID: 29477695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interruption of projections from the medial geniculate body to an archi-neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli.
    LeDoux JE; Sakaguchi A; Iwata J; Reis DJ
    Neuroscience; 1986 Mar; 17(3):615-27. PubMed ID: 3703252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mapping of the rat brain during drinking behavior: a fluorodeoxyglucose study.
    Gonzalez-Lima F; Helmstetter FJ; Agudo J
    Physiol Behav; 1993 Sep; 54(3):605-12. PubMed ID: 8415957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial auditory thalamic nuclei are necessary for eyeblink conditioning.
    Halverson HE; Freeman JH
    Behav Neurosci; 2006 Aug; 120(4):880-7. PubMed ID: 16893294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of multiple-unit activity in the medial prefrontal and agranular insular cortices during Pavlovian heart rate conditioning in rabbits.
    Gibbs CM; Prescott LB; Powell DA
    Exp Brain Res; 1992; 89(3):599-610. PubMed ID: 1644124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of auditory and somatosensory system activity during pupillary conditioning in the paralyzed cat.
    Oleson TD; Ashe JH; Weinberger NM
    J Neurophysiol; 1975 Sep; 38(5):1114-39. PubMed ID: 1177008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medial auditory thalamic stimulation as a conditioned stimulus for eyeblink conditioning in rats.
    Campolattaro MM; Halverson HE; Freeman JH
    Learn Mem; 2007 Mar; 14(3):152-9. PubMed ID: 17351138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.