These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 11495962)
1. Ocular counterroll modulates the preferred direction of saccade-related pontine burst neurons in the monkey. Scherberger H; Cabungcal JH; Hepp K; Suzuki Y; Straumann D; Henn V J Neurophysiol; 2001 Aug; 86(2):935-49. PubMed ID: 11495962 [TBL] [Abstract][Full Text] [Related]
2. Spatio-temporal recoding of rapid eye movement signals in the monkey paramedian pontine reticular formation (PPRF). Hepp K; Henn V Exp Brain Res; 1983; 52(1):105-20. PubMed ID: 6628590 [TBL] [Abstract][Full Text] [Related]
3. Comparison of saccade-associated neuronal activity in the primate central mesencephalic and paramedian pontine reticular formations. Cromer JA; Waitzman DM J Neurophysiol; 2007 Aug; 98(2):835-50. PubMed ID: 17537904 [TBL] [Abstract][Full Text] [Related]
4. Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation. Walton MM; Freedman EG Exp Brain Res; 2011 Oct; 214(2):225-39. PubMed ID: 21842410 [TBL] [Abstract][Full Text] [Related]
5. The collicular code of saccade direction depends on the roll orientation of the head relative to gravity. Frens MA; Suzuki Y; Scherberger H; Hepp K; Henn V Exp Brain Res; 1998 Jun; 120(3):283-90. PubMed ID: 9628415 [TBL] [Abstract][Full Text] [Related]
6. Temporal characteristics of neurons in the central mesencephalic reticular formation of head unrestrained monkeys. Pathmanathan JS; Cromer JA; Cullen KE; Waitzman DM Exp Brain Res; 2006 Jan; 168(4):471-92. PubMed ID: 16292574 [TBL] [Abstract][Full Text] [Related]
7. Evidence against direct connections to PPRF EBNs from SC in the monkey. Keller EL; McPeek RM; Salz T J Neurophysiol; 2000 Sep; 84(3):1303-13. PubMed ID: 10980004 [TBL] [Abstract][Full Text] [Related]
8. Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map. Hepp K; Van Opstal AJ; Straumann D; Hess BJ; Henn V J Neurophysiol; 1993 Mar; 69(3):965-79. PubMed ID: 8385203 [TBL] [Abstract][Full Text] [Related]
9. Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. Segraves MA J Neurophysiol; 1992 Dec; 68(6):1967-85. PubMed ID: 1491252 [TBL] [Abstract][Full Text] [Related]
10. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements. Waitzman DM; Silakov VL; Cohen B J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396 [TBL] [Abstract][Full Text] [Related]
11. Saccade initiation and the reliability of motor signals involved in the generation of saccadic eye movements. Sparks DL; Hu X Novartis Found Symp; 2006; 270():75-88; discussion 88-91, 108-13. PubMed ID: 16649709 [TBL] [Abstract][Full Text] [Related]
12. Burst discharges of mossy fibers in the oculomotor vermis of macaque monkeys during saccadic eye movements. Ohtsuka K; Noda H Neurosci Res; 1992 Oct; 15(1-2):102-14. PubMed ID: 1336577 [TBL] [Abstract][Full Text] [Related]
13. Activity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts. Walton MM; Freedman EG J Neurophysiol; 2014 Jan; 111(2):300-12. PubMed ID: 24174648 [TBL] [Abstract][Full Text] [Related]
14. Analysis of primate IBN spike trains using system identification techniques. III. Relationship To motor error during head-fixed saccades and head-free gaze shifts. Cullen KE; Guitton D J Neurophysiol; 1997 Dec; 78(6):3307-22. PubMed ID: 9405546 [TBL] [Abstract][Full Text] [Related]
15. Effects of reversible inactivation of the primate mesencephalic reticular formation. I. Hypermetric goal-directed saccades. Waitzman DM; Silakov VL; DePalma-Bowles S; Ayers AS J Neurophysiol; 2000 Apr; 83(4):2260-84. PubMed ID: 10758133 [TBL] [Abstract][Full Text] [Related]
16. Studies of the role of the paramedian pontine reticular formation in the control of head-restrained and head-unrestrained gaze shifts. Sparks DL; Barton EJ; Gandhi NJ; Nelson J Ann N Y Acad Sci; 2002 Apr; 956():85-98. PubMed ID: 11960796 [TBL] [Abstract][Full Text] [Related]
17. Comparing extraocular motoneuron discharges during head-restrained saccades and head-unrestrained gaze shifts. Cullen KE; Galiana HL; Sylvestre PA J Neurophysiol; 2000 Jan; 83(1):630-7. PubMed ID: 10634902 [TBL] [Abstract][Full Text] [Related]
18. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. Ohtsuka K; Noda H J Neurophysiol; 1991 Jun; 65(6):1422-34. PubMed ID: 1875251 [TBL] [Abstract][Full Text] [Related]
19. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Russo GS; Bruce CJ J Neurophysiol; 1996 Aug; 76(2):825-48. PubMed ID: 8871203 [TBL] [Abstract][Full Text] [Related]
20. Activity of neurons in monkey superior colliculus during interrupted saccades. Munoz DP; Waitzman DM; Wurtz RH J Neurophysiol; 1996 Jun; 75(6):2562-80. PubMed ID: 8793764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]