BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11496666)

  • 1. Nutrient removal in the river basin of the Ruhr--a German case study.
    Bode H; Klopp R
    Water Sci Technol; 2001; 44(1):15-24. PubMed ID: 11496666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of total nitrogen pollution reduction strategies in a river basin: a case study.
    Drolc A; Kondan JZ; Cotman M
    Water Sci Technol; 2001; 44(6):55-62. PubMed ID: 11700664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling diffuse nutrient flow in eutrophication control scenarios.
    Arheimer B; Andersson L; Larsson M; Lindström G; Olsson J; Pers BC
    Water Sci Technol; 2004; 49(3):37-45. PubMed ID: 15053097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annual nutrients export modelling by analysis of landuse and topographic information: case of a small Mediterranean catchment.
    Payraudeau S; Tournoud MG; Cernesson F; Picot B
    Water Sci Technol; 2001; 44(2-3):321-7. PubMed ID: 11548001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).
    Mourad D; van der Perk M
    Water Sci Technol; 2004; 49(3):21-8. PubMed ID: 15053095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management.
    Bowes MJ; Hilton J; Irons GP; Hornby DD
    Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of efficiencies of diffuse allochthonous and autochthonous nutrient input control in restoration of a highly eutrophic lake.
    Muhammetoğlu A; Muhammetoğlu H; Soyupak S
    Water Sci Technol; 2002; 45(9):195-203. PubMed ID: 12079103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of best management practices in agriculture: modelling and monitoring of impacts on nitrogen leaching.
    Joelsson A; Kyllmar K
    Water Sci Technol; 2002; 45(9):43-50. PubMed ID: 12079123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New challenges for the management of plant nutrients and pathogens in the Waikato River, New Zealand.
    Vant WN
    Water Sci Technol; 2001; 43(5):137-44. PubMed ID: 11379125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical modelling of riverine nutrient sources and retention in the Lake Peipsi drainage basin.
    Vassiljev A; Stålnacke P
    Water Sci Technol; 2005; 51(3-4):309-17. PubMed ID: 15850204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.
    Schaffner M; Bader HP; Scheidegger R
    Sci Total Environ; 2009 Aug; 407(17):4902-15. PubMed ID: 19501876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of artificial oxygenation to reduce nutrient availability in the Canning River, Western Australia.
    Greenop B; Lovatt K; Robb M
    Water Sci Technol; 2001; 43(9):133-44. PubMed ID: 11419121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the effect of nutrient mitigation measures in the watersheds of the Southern Bight of the North Sea.
    Thieu V; Garnier J; Billen G
    Sci Total Environ; 2010 Feb; 408(6):1245-55. PubMed ID: 20071008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany.
    Hirt U; Venohr M; Kreins P; Behrendt H
    Water Sci Technol; 2008; 58(11):2251-8. PubMed ID: 19092203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measures for structural improvement with regard to the good status of water bodies--estimation of expenditure for a river basin in Germany.
    Grünebaum T; Morgenschweis G; Nusch EA; Schweder H; Weyand M
    Water Sci Technol; 2003; 48(10):39-46. PubMed ID: 15137151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-point pollution from China's rural areas and its countermeasures.
    Yin CQ; Yang CF; Shan BQ; Li GB; Wang DL
    Water Sci Technol; 2001; 44(7):123-8. PubMed ID: 11724477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eutrophication and sedimentation patterns in complete exploitation of water resources scenarios: an example from Northwestern semi-arid Mexico.
    Sánchez-Carrillo S; Alatorre LC; Sánchez-Andrés R; Garatuza-Payán J
    Environ Monit Assess; 2007 Sep; 132(1-3):377-93. PubMed ID: 17171240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A micro case study of the legal and administrative arrangements for river health in the Kangaroo River (NSW).
    Mooney C; Farrier D
    Water Sci Technol; 2002; 45(11):161-8. PubMed ID: 12171348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.