BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11496949)

  • 1. LDL induced association of anionic liposomes with cells and delivery of contents as shown by the increase in potency of liposome dependent drugs.
    Amin K; Ng KY; Brown CS; Bruno MS; Heath TD
    Pharm Res; 2001 Jul; 18(7):914-21. PubMed ID: 11496949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LDL-induced association of anionic liposomes with cells and delivery of contents. II. Interaction of liposomes with cells in serum-containing medium.
    Amin K; Heath TD
    J Control Release; 2001 May; 73(1):49-57. PubMed ID: 11337059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell association of liposomes with high fluid anionic phospholipid content is mediated specifically by LDL and its receptor, LDLr.
    Amin K; Wasan KM; Albrecht RM; Heath TD
    J Pharm Sci; 2002 May; 91(5):1233-44. PubMed ID: 11977099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leakage and delivery of liposome-encapsulated methotrexate-gamma-aspartate in a chemically defined medium.
    Comiskey SJ; Heath TD
    Biochim Biophys Acta; 1990 May; 1024(2):307-17. PubMed ID: 2354182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of human ovarian tumor cell sensitivity to N-(phosphonacetyl)-L-aspartate (PALA) by liposome drug carriers.
    Sharma A; Straubinger NL; Straubinger RM
    Pharm Res; 1993 Oct; 10(10):1434-41. PubMed ID: 8272404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liposome dependent delivery of S-adenosyl methionine to cells by liposomes: a potential treatment for liver disease.
    Wagner EJ; Krugner-Higby L; Heath TD
    J Pharm Sci; 2009 Feb; 98(2):573-82. PubMed ID: 18642386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of liposome size and surface charge on liposome-mediated delivery of methotrexate-gamma-aspartate to cells in vitro.
    Heath TD; Lopez NG; Papahadjopoulos D
    Biochim Biophys Acta; 1985 Oct; 820(1):74-84. PubMed ID: 3876848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liposome-dependent delivery of pteridine antifolates: a two-compartment growth inhibition assay for evaluating drug leakage and metabolism.
    Ng KY; Heath TD
    Biochim Biophys Acta; 1989 Jun; 981(2):261-8. PubMed ID: 2730904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular retention of liposome-delivered anionic compounds modulated by a probenecid-sensitive anion transporter.
    Oh YK; Straubinger RM
    Pharm Res; 1997 Sep; 14(9):1203-9. PubMed ID: 9327449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum-induced leakage of negatively charged liposomes at nanomolar lipid concentrations.
    Comiskey SJ; Heath TD
    Biochemistry; 1990 Apr; 29(15):3626-31. PubMed ID: 2340262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density.
    Lee KD; Hong K; Papahadjopoulos D
    Biochim Biophys Acta; 1992 Jan; 1103(2):185-97. PubMed ID: 1543703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liposome-mediated delivery of pteridine antifolates to cells in vitro: potency of methotrexate, and its alpha and gamma substituents.
    Heath TD; Lopez NG; Piper JR; Montgomery JA; Stern WH; Papahadjopoulos D
    Biochim Biophys Acta; 1986 Nov; 862(1):72-80. PubMed ID: 3768370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions.
    Fraley R; Straubinger RM; Rule G; Springer EL; Papahadjopoulos D
    Biochemistry; 1981 Nov; 20(24):6978-87. PubMed ID: 6274382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that the scavenger receptor is not involved in the uptake of negatively charged liposomes by cells.
    Lee KD; Pitas RE; Papahadjopoulos D
    Biochim Biophys Acta; 1992 Oct; 1111(1):1-6. PubMed ID: 1390854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of negatively-charged phospholipids with low-density lipoprotein (LDL) increases its uptake and the deposition of cholesteryl esters by macrophages.
    Greenspan P; Ryu BH; Mao F; Gutman RL
    Biochim Biophys Acta; 1995 Aug; 1257(3):257-64. PubMed ID: 7647101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liposome uptake by cultured macrophages mediated by modified low-density lipoproteins.
    Ivanov VO; Preobrazhensky SN; Tsibulsky VP; Babaev VR; Repin VS; Smirnov VN
    Biochim Biophys Acta; 1985 Jul; 846(1):76-84. PubMed ID: 4016158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable incorporation of a lipophilic daunorubicin prodrug into apolipoprotein E-exposing liposomes induces uptake of prodrug via low-density lipoprotein receptor in vivo.
    Versluis AJ; Rump ET; Rensen PC; van Berkel TJ; Bijsterbosch MK
    J Pharmacol Exp Ther; 1999 Apr; 289(1):1-7. PubMed ID: 10086980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome-based therapy of human ovarian cancer: parameters determining potency of negatively charged and antibody-targeted liposomes.
    Straubinger RM; Lopez NG; Debs RJ; Hong K; Papahadjopoulos D
    Cancer Res; 1988 Sep; 48(18):5237-45. PubMed ID: 3409248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The propensity for gene amplification: a comparison of protocols, cell lines, and selection agents.
    Sharma RC; Schimke RT
    Mutat Res; 1994 Jan; 304(2):243-60. PubMed ID: 7506368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes.
    Versluis AJ; Rensen PC; Rump ET; Van Berkel TJ; Bijsterbosch MK
    Br J Cancer; 1998 Dec; 78(12):1607-14. PubMed ID: 9862571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.