These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 11497081)

  • 1. Establishment of a swine monocyte cell line.
    Kadoi K; Tsukise A; Shiba H; Ikeda K; Seki T; Ariga T
    New Microbiol; 2001 Jul; 24(3):243-7. PubMed ID: 11497081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a canine monocyte cell line.
    Kadoi K
    New Microbiol; 2000 Oct; 23(4):441-4. PubMed ID: 11061633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The establishment of continuous macrophage cell lines from peripheal blood monocytes.
    Wardley RC; Lawman MJ; Hamilton F
    Immunology; 1980 Jan; 39(1):67-73. PubMed ID: 6769783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration of endothelial-like cell differentiation from CD14+ monocytes in vitro.
    Zhang R; Yang H; Li M; Yao Q; Chen C
    Exp Hematol; 2005 Dec; 33(12):1554-63. PubMed ID: 16338499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An established feline monocytic cell line.
    Kadoi K
    New Microbiol; 2006 Jul; 29(3):219-22. PubMed ID: 17058791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of HIV viral load on the phagocytic activity of monocytes activated with lipopolysaccharide from oral microorganisms.
    Baqui AA; Meiller TF; Zhang M; Falkler WA
    Immunopharmacol Immunotoxicol; 1999 Aug; 21(3):421-38. PubMed ID: 10466072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of monocytic cell activity and virus susceptibility during differentiation into macrophages.
    Basta S; Knoetig SM; Spagnuolo-Weaver M; Allan G; McCullough KC
    J Immunol; 1999 Apr; 162(7):3961-9. PubMed ID: 10201916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine.
    Tsung HC; Du ZW; Rui R; Li XL; Bao LP; Wu J; Bao SM; Yao Z
    Cell Res; 2003 Jun; 13(3):195-202. PubMed ID: 12862320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The porcine 2A10 antigen is homologous to human CD163 and related to macrophage differentiation.
    Sánchez C; Doménech N; Vázquez J; Alonso F; Ezquerra A; Domínguez J
    J Immunol; 1999 May; 162(9):5230-7. PubMed ID: 10227997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of cell lines from somatic cell hybrids between human monocytes and mouse myeloma cells.
    Treves AJ; Fuks Z; Voss R; Tal T; Barak V; Konijn AM; Kaplan R; Laskov R
    J Immunol; 1984 Feb; 132(2):690-4. PubMed ID: 6606677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-CSF-mobilized CD34+ cells cultured in interleukin-2 and stem cell factor generate a phenotypically novel monocyte.
    Sconocchia G; Fujiwara H; Rezvani K; Keyvanfar K; El Ouriaghli F; Grube M; Melenhorst J; Hensel N; Barrett AJ
    J Leukoc Biol; 2004 Dec; 76(6):1214-9. PubMed ID: 15345723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of functional complement receptors during in vitro maturation of human monocytes into macrophages.
    Newman SL; Musson RA; Henson PM
    J Immunol; 1980 Nov; 125(5):2236-44. PubMed ID: 7430626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replicative response, immunophenotype, and functional activity of monocyte-derived versus CD34(+)-derived dendritic cells following exposure to various expansion and maturational stimuli.
    Chen B; Stiff P; Sloan G; Kash J; Manjunath R; Pathasarathy M; Oldenburg D; Foreman KE; Nickoloff BJ
    Clin Immunol; 2001 Feb; 98(2):280-92. PubMed ID: 11161986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells.
    Rosenzwajg M; Jourquin F; Tailleux L; Gluckman JC
    J Leukoc Biol; 2002 Dec; 72(6):1180-9. PubMed ID: 12488500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of short- and long-term cultured goat peripheral blood monocytes.
    Liggitt HD
    Am J Vet Res; 1983 May; 44(5):919-24. PubMed ID: 6346970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells.
    Yoshida M; Babensee JE
    J Biomed Mater Res A; 2004 Oct; 71(1):45-54. PubMed ID: 15368253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culture and characterisation of peripheral blood monocytes and monocyte-derived adherent cells of the tammar wallaby, Macropus eugenii.
    Young LJ; Deane EM
    Immunol Lett; 2005 Jan; 96(2):253-9. PubMed ID: 15585331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human mononuclear phagocyte-associated antigens. III. Relationship of cell surface antigen phenotype between cultured monocytes and tissue macrophages.
    Waldrep JC; Kaplan AM; Mohanakumar T
    J Reticuloendothel Soc; 1983 Oct; 34(4):323-30. PubMed ID: 6620258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sinomenine promotes differentiation but impedes maturation and co-stimulatory molecule expression of human monocyte-derived dendritic cells.
    Chen Y; Yang C; Jin N; Xie Z; Fei L; Jia Z; Wu Y
    Int Immunopharmacol; 2007 Aug; 7(8):1102-10. PubMed ID: 17570327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term human peripheral blood monocyte cultures: establishment, metabolism and morphology of primary human monocyte-macrophage cell cultures.
    Zuckerman SH; Ackerman SK; Douglas SD
    Immunology; 1979 Oct; 38(2):401-11. PubMed ID: 389789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.