BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11497411)

  • 1. Rod-/L-cone and rod-/M-cone interactions in electroretinograms at different temporal frequencies.
    Kremers J; Scholl HP
    Vis Neurosci; 2001; 18(3):339-51. PubMed ID: 11497411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of rod- and cone-driven oscillatory potentials in mice.
    Lei B; Yao G; Zhang K; Hofeldt KJ; Chang B
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2732-8. PubMed ID: 16723493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between rod and L-cone signals in deuteranopes: gains and phases.
    Kilavik BE; Kremers J
    Vis Neurosci; 2006; 23(2):201-7. PubMed ID: 16638172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rod- and cone-isolated flicker electroretinograms and their response summation characteristics.
    McAnany JJ; Park JC; Cao D
    Vis Neurosci; 2015 Jan; 32():E018. PubMed ID: 26241372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large phase differences between L-cone- and M-cone-driven electroretinograms in retinitis pigmentosa.
    Scholl HP; Kremers J
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3225-33. PubMed ID: 10967087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone signal contributions to electroretinograms [correction of electrograms] in dichromats and trichromats.
    Kremers J; Usui T; Scholl HP; Sharpe LT
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):920-30. PubMed ID: 10102289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spatial properties of L- and M-cone inputs to electroretinograms that reflect different types of post-receptoral processing.
    Jacob MM; Pangeni G; Gomes BD; Souza GS; da Silva Filho M; Silveira LC; Maguire J; Parry NR; McKeefry DJ; Kremers J
    PLoS One; 2015; 10(3):e0121218. PubMed ID: 25785459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroretinographic responses to photoreceptor specific sine wave modulation.
    Kremers J; Pangeni G
    J Opt Soc Am A Opt Image Sci Vis; 2012 Feb; 29(2):A306-13. PubMed ID: 22330394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli.
    Mowat FM; Wise E; Oh A; Foster ML; Kremers J
    Exp Eye Res; 2019 Aug; 185():107673. PubMed ID: 31128103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An extended 15 Hz ERG protocol (1): the contributions of primary and secondary rod pathways and the cone pathway.
    Bijveld MM; Kappers AM; Riemslag FC; Hoeben FP; Vrijling AC; van Genderen MM
    Doc Ophthalmol; 2011 Dec; 123(3):149-59. PubMed ID: 21947561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progressive cone dystrophy with deutan genotype and phenotype.
    Scholl HP; Kremers J; Besch D; Zrenner E; Jägle H
    Graefes Arch Clin Exp Ophthalmol; 2006 Feb; 244(2):183-91. PubMed ID: 16082559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod and cone contributions to the a-wave of the electroretinogram of the macaque.
    Robson JG; Saszik SM; Ahmed J; Frishman LJ
    J Physiol; 2003 Mar; 547(Pt 2):509-30. PubMed ID: 12562933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse Cones Adapt Fast, Rods Slowly In Vivo.
    Joachimsthaler A; Kremers J
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2152-2164. PubMed ID: 31100107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rod- and cone-driven responses in mice expressing human L-cone pigment.
    Tsai TI; Atorf J; Neitz M; Neitz J; Kremers J
    J Neurophysiol; 2015 Oct; 114(4):2230-41. PubMed ID: 26245314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal 8-Hz flicker electroretinograms in carriers of X-linked retinoschisis.
    McAnany JJ; Park JC; Collison FT; Fishman GA; Stone EM
    Doc Ophthalmol; 2016 Aug; 133(1):61-70. PubMed ID: 27369766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation.
    Pinilla I; Lund RD; Sauvé Y
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):16-21. PubMed ID: 15911114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function.
    Stockman A; Henning GB; Michaelides M; Moore AT; Webster AR; Cammack J; Ripamonti C
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):832-40. PubMed ID: 24370833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the rhodopsin knockout mouse as a model of pure cone function.
    Jaissle GB; May CA; Reinhard J; Kohler K; Fauser S; Lütjen-Drecoll E; Zrenner E; Seeliger MW
    Invest Ophthalmol Vis Sci; 2001 Feb; 42(2):506-13. PubMed ID: 11157890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposite effects of nitric oxide on rod and cone photoreceptors of rat retina in situ.
    Sato M; Ohtsuka T
    Neurosci Lett; 2010 Mar; 473(1):62-6. PubMed ID: 20171265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.