These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11497423)

  • 1. Linear filtering and nonlinear interactions in direction-selective visual cortex neurons: a noise correlation analysis.
    Baker CL
    Vis Neurosci; 2001; 18(3):465-85. PubMed ID: 11497423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laminar differences in the spatiotemporal structure of simple cell receptive fields in cat area 17.
    Murthy A; Humphrey AL; Saul AB; Feidler JC
    Vis Neurosci; 1998; 15(2):239-56. PubMed ID: 9605526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex.
    Reid RC; Soodak RE; Shapley RM
    J Neurophysiol; 1991 Aug; 66(2):505-29. PubMed ID: 1774584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17.
    Murthy A; Humphrey AL
    J Neurophysiol; 1999 Mar; 81(3):1212-24. PubMed ID: 10085348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1118-35. PubMed ID: 8492152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
    Humphrey AL; Saul AB
    J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling simple-cell direction selectivity with normalized, half-squared, linear operators.
    Heeger DJ
    J Neurophysiol; 1993 Nov; 70(5):1885-98. PubMed ID: 8294961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadrature subunits in directionally selective simple cells: counterphase and drifting grating responses.
    Emerson RC; Huang MC
    Vis Neurosci; 1997; 14(2):373-85. PubMed ID: 9147488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli.
    Sharpee TO; Miller KD; Stryker MP
    J Neurophysiol; 2008 May; 99(5):2496-509. PubMed ID: 18353910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.
    Gharat A; Baker CL
    J Neurosci; 2017 Jan; 37(4):998-1013. PubMed ID: 28123031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex.
    Priebe NJ; Ferster D
    Neuron; 2005 Jan; 45(1):133-45. PubMed ID: 15629708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical processing of second-order motion.
    Mareschal I; Baker CL
    Vis Neurosci; 1999; 16(3):527-40. PubMed ID: 10349973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal encoding of a bar's direction of motion by neural ensembles in cat primary visual cortex.
    Warren DJ; Koulakov A; Normann RA
    Ann Biomed Eng; 2004 Sep; 32(9):1265-75. PubMed ID: 15493513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How MT cells analyze the motion of visual patterns.
    Rust NC; Mante V; Simoncelli EP; Movshon JA
    Nat Neurosci; 2006 Nov; 9(11):1421-31. PubMed ID: 17041595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic asymmetry cannot account for directional responses of neurons in visual cortex.
    Anderson JC; Binzegger T; Kahana O; Martin KA; Segev I
    Nat Neurosci; 1999 Sep; 2(9):820-4. PubMed ID: 10461221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of white-noise techniques to analyzing motion responses.
    van Kleef JP; Stange G; Ibbotson MR
    J Neurophysiol; 2010 May; 103(5):2642-51. PubMed ID: 20053848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear directionally selective subunits in complex cells of cat striate cortex.
    Emerson RC; Citron MC; Vaughn WJ; Klein SA
    J Neurophysiol; 1987 Jul; 58(1):33-65. PubMed ID: 3039079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direction selectivity and spatiotemporal separability in simple cortical cells.
    García-Pérez MA
    J Comput Neurosci; 1999; 7(2):173-89. PubMed ID: 10515253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A subspace reverse-correlation technique for the study of visual neurons.
    Ringach DL; Sapiro G; Shapley R
    Vision Res; 1997 Sep; 37(17):2455-64. PubMed ID: 9381680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.