These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11497600)

  • 1. Sharp interface limits of phase-field models.
    Elder KR; Grant M; Provatas N; Kosterlitz JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021604. PubMed ID: 11497600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-coupling and interface-pinning effects in the phase-field-crystal model.
    Huang ZF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012401. PubMed ID: 23410338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion.
    Ramirez JC; Beckermann C; Karma A; Diepers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative phase-field modeling for boiling phenomena.
    Badillo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041603. PubMed ID: 23214595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlocal Kardar-Parisi-Zhang equation to model interface growth.
    Kechagia P; Yortsos YC; Lichtner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016315. PubMed ID: 11461399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regularized phase-field model for faceting in a kinetically controlled crystal growth.
    Philippe T; Henry H; Plapp M
    Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200227. PubMed ID: 33071578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear phase-field model for electrode-electrolyte interface evolution.
    Liang L; Qi Y; Xue F; Bhattacharya S; Harris SJ; Chen LQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051609. PubMed ID: 23214795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation.
    Agoritsas E; Lecomte V; Giamarchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042406. PubMed ID: 23679428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sharp-interface projection of a fluctuating phase-field model.
    Benítez R; Ramírez-Piscina L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061603. PubMed ID: 16089744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hodograph equation for slow and fast anisotropic interface propagation.
    Galenko PK; Salhoumi A
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200324. PubMed ID: 34275359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onsager approach to the one-dimensional solidification problem and its relation to the phase-field description.
    Brener EA; Temkin DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031601. PubMed ID: 22587102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic growth models for driven interfaces through random media in two and three dimensions.
    Kim HJ; Park K; Kim IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):017104. PubMed ID: 11800821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusionless crystal growth in rapidly solidifying eutectic systems.
    Galenko PK; Herlach DM
    Phys Rev Lett; 2006 Apr; 96(15):150602. PubMed ID: 16712141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute trapping in rapid solidification of a binary dilute system: a phase-field study.
    Galenko PK; Abramova EV; Jou D; Danilov DA; Lebedev VG; Herlach DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041143. PubMed ID: 22181123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudospectral approach to inverse problems in interface dynamics.
    Giacometti A; Rossi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046102. PubMed ID: 11308907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kardar-Parisi-Zhang equation in the weak noise limit: pattern formation and upper critical dimension.
    Fogedby HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031104. PubMed ID: 16605497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase field modeling of fracture and stress-induced phase transitions.
    Spatschek R; Müller-Gugenberger C; Brener E; Nestler B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066111. PubMed ID: 17677329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk dynamics for interfacial growth models.
    Lopez C; Garrido PL; de Los Santos F
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt A):4747-51. PubMed ID: 11089016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Set of measures to analyze the dynamics of nonequilibrium structures.
    Nathan G; Gunaratne G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):035101. PubMed ID: 15903477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum action method for the Kardar-Parisi-Zhang equation.
    Fogedby HC; Ren W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041116. PubMed ID: 19905282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.