These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 11497601)

  • 21. Pore size distributions, pore coupling, and transverse relaxation spectra of porous rocks.
    Kleinberg RL
    Magn Reson Imaging; 1994; 12(2):271-4. PubMed ID: 8170317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translational diffusion of liquids at surface of microporous materials: new theoretical analysis of field cycling magnetic relaxation measurements.
    Korb JP; Hodges MW; Bryant R
    Magn Reson Imaging; 1998; 16(5-6):575-8. PubMed ID: 9803912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of interfacial area from NMR time dependent diffusion and relaxation measurements.
    Fleury M
    J Colloid Interface Sci; 2018 Jan; 509():495-501. PubMed ID: 28923747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength.
    Mitchell J; Chandrasekera TC; Johns ML; Gladden LF; Fordham EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026101. PubMed ID: 20365625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A finite element approach to forward modeling of nuclear magnetic resonance measurements in coupled pore systems.
    Mitchell J; Souza A; Fordham E; Boyd A
    J Chem Phys; 2019 Apr; 150(15):154708. PubMed ID: 31005119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface dynamics of liquids in porous media.
    Korb JP
    Magn Reson Imaging; 2001; 19(3-4):363-8. PubMed ID: 11445312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterising oil and water in porous media using decay due to diffusion in the internal field.
    Lewis RT; Djurhuus K; Seland JG
    J Magn Reson; 2015 Oct; 259():1-9. PubMed ID: 26254732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry.
    Kruk D; Meier R; Rachocki A; Korpała A; Singh RK; Rössler EA
    J Chem Phys; 2014 Jun; 140(24):244509. PubMed ID: 24985656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water vapor absorption in porous media polluted by calcium nitrate studied by time domain nuclear magnetic resonance.
    Gombia M; Bortolotti V; Brown RJ; Camaiti M; Cavallero L; Fantazzini P
    J Phys Chem B; 2009 Aug; 113(31):10580-6. PubMed ID: 19594125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid measurements of heterogeneity in sandstones using low-field nuclear magnetic resonance.
    Mitchell J
    J Magn Reson; 2014 Mar; 240():52-60. PubMed ID: 24530953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial distribution of coke residues in porous catalyst pellets analyzed by field-cycling relaxometry and parameter imaging.
    Stapf S; Ren X; Talnishnikh E; Blümich B
    Magn Reson Imaging; 2005 Feb; 23(2):383-6. PubMed ID: 15833654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusion measurement in sandstone core: NMR determination of surface-to-volume ratio and surface relaxivity.
    Hürlimann MD; Latour LL; Sotak CH
    Magn Reson Imaging; 1994; 12(2):325-7. PubMed ID: 8170331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel application of NMR relaxometry in studies of diffusion in virgin rape oil.
    Rachocki A; Tritt-Goc J
    Food Chem; 2014; 152():94-9. PubMed ID: 24444911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative evaluation of porous media wettability using NMR relaxometry.
    Fleury M; Deflandre F
    Magn Reson Imaging; 2003; 21(3-4):385-7. PubMed ID: 12850740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer.
    Shushakov OA
    Magn Reson Imaging; 1996; 14(7-8):959-60. PubMed ID: 8970122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saturation-dependent nuclear magnetic resonance relaxation of fluids confined inside porous media with micrometer-sized pores.
    Simina M; Nechifor R; Ardelean I
    Magn Reson Chem; 2011 Jun; 49(6):314-9. PubMed ID: 21452343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New applications and perspectives of fast field cycling NMR relaxometry.
    Steele RM; Korb JP; Ferrante G; Bubici S
    Magn Reson Chem; 2016 Jun; 54(6):502-9. PubMed ID: 25855084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Restricted diffusion and exchange of water in porous media: average structure determination and size distribution resolved from the effect of local field gradients on the proton NMR spectrum.
    Kuntz JF; Palmas P; Level V; Canet D
    J Magn Reson; 2008 Apr; 191(2):239-47. PubMed ID: 18222101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular exchange dynamics in partially filled microscale and nanoscale pores of silica glasses studied by field-cycling nuclear magnetic resonance relaxometry.
    Mattea C; Kimmich R; Ardelean I; Wonorahardjo S; Farrher G
    J Chem Phys; 2004 Dec; 121(21):10648-56. PubMed ID: 15549948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation into the effects of pore connectivity on T
    Ghomeshi S; Kryuchkov S; Kantzas A
    J Magn Reson; 2018 Apr; 289():79-91. PubMed ID: 29476929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.