These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 11497618)
41. Can Raman optical activity separate axial from local chirality? A theoretical study of helical deca-alanine. Herrmann C; Ruud K; Reiher M Chemphyschem; 2006 Oct; 7(10):2189-96. PubMed ID: 16941557 [TBL] [Abstract][Full Text] [Related]
42. Solvent effect on the vibrational spectra of Carvedilol. Billes F; Pataki H; Unsalan O; Mikosch H; Vajna B; Marosi G Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():148-64. PubMed ID: 22617221 [TBL] [Abstract][Full Text] [Related]
43. Structure, electronic circular dichroism and Raman optical activity in the gas phase and in solution: a computational and experimental investigation. Macleod NA; Butz P; Simons JP; Grant GH; Baker CM; Tranter GE Phys Chem Chem Phys; 2005 Apr; 7(7):1432-40. PubMed ID: 19787965 [TBL] [Abstract][Full Text] [Related]
44. Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. He Y; Wang B; Dukor RK; Nafie LA Appl Spectrosc; 2011 Jul; 65(7):699-723. PubMed ID: 21740631 [TBL] [Abstract][Full Text] [Related]
45. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations. Urago H; Suga T; Hirata T; Kodama H; Unno M J Phys Chem B; 2014 Jun; 118(24):6767-74. PubMed ID: 24873951 [TBL] [Abstract][Full Text] [Related]
46. Conformational flexibility of L-alanine zwitterion determines shapes of Raman and Raman optical activity spectral bands. Kapitan J; Baumruk V; Kopecký V; Bour P J Phys Chem A; 2006 Apr; 110(14):4689-96. PubMed ID: 16599435 [TBL] [Abstract][Full Text] [Related]
47. Comparison of quantitative conformer analyses by nuclear magnetic resonance and Raman optical activity spectra for model dipeptides. Budesínský M; Danecek P; Bednárová L; Kapitán J; Baumruk V; Bour P J Phys Chem A; 2008 Sep; 112(37):8633-40. PubMed ID: 18729424 [TBL] [Abstract][Full Text] [Related]
48. Lactic acid in solution: investigations of lactic acid self-aggregation and hydrogen bonding interactions with water and methanol using vibrational absorption and vibrational circular dichroism spectroscopies. Losada M; Tran H; Xu Y J Chem Phys; 2008 Jan; 128(1):014508. PubMed ID: 18190205 [TBL] [Abstract][Full Text] [Related]
49. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: hydrogen-bonding interactions with water. Poopari MR; Zhu P; Dezhahang Z; Xu Y J Chem Phys; 2012 Nov; 137(19):194308. PubMed ID: 23181307 [TBL] [Abstract][Full Text] [Related]
50. Envisaging Structural Insight of a Terminally Protected Proline Dipeptide by Raman Spectroscopy and Density Functional Theory Analyses. Das S; Pal U; Chatterjee M; Pramanik SK; Banerji B; Maiti NC J Phys Chem A; 2016 Dec; 120(49):9829-9840. PubMed ID: 27973793 [TBL] [Abstract][Full Text] [Related]
51. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine. Srivastava SK; Singh VB Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():45-50. PubMed ID: 23831977 [TBL] [Abstract][Full Text] [Related]
53. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester. Shoba D; Periandy S; Govindarajan M; Gayathri P Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():852-63. PubMed ID: 25459608 [TBL] [Abstract][Full Text] [Related]
54. Vibrational spectroscopic characteristics of secondary structure polypeptides in liquid water: constrained MD simulation studies. Choi JH; Hahn S; Cho M Biopolymers; 2006 Dec; 83(5):519-36. PubMed ID: 16888772 [TBL] [Abstract][Full Text] [Related]
55. Vibrational and chiroptical spectroscopic characterization of gamma-turn model cyclic tetrapeptides containing two beta-Ala residues. Vass E; Majer Z; Kohalmy K; Hollósi M Chirality; 2010 Aug; 22(8):762-71. PubMed ID: 20155823 [TBL] [Abstract][Full Text] [Related]
56. Conformational preferences of N-acetyl-L-leucine-N'-methylamide. Gas-phase and solution calculations on the model dipeptide. Masman MF; Lovas S; Murphy RF; Enriz RD; Rodríguez AM J Phys Chem A; 2007 Oct; 111(42):10682-91. PubMed ID: 17887655 [TBL] [Abstract][Full Text] [Related]
57. Analysis of vibrational spectra of L-alanylglycine based on density functional theory calculations. Padmaja L; Ravikumar C; James C; Jayakumar VS; Hubert Joe I Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):252-62. PubMed ID: 18243781 [TBL] [Abstract][Full Text] [Related]
58. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water. Yang G; Xu Y J Chem Phys; 2009 Apr; 130(16):164506. PubMed ID: 19405593 [TBL] [Abstract][Full Text] [Related]
59. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes. Cai K; Du F; Liu J; Su T Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():701-10. PubMed ID: 25260065 [TBL] [Abstract][Full Text] [Related]
60. Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: beta-peptides Ac-beta3-hPhe-beta3-hAla-NHMe and Ac-beta3-hAla-beta3-hPhe-NHMe. Baquero EE; James WH; Choi SH; Gellman SH; Zwier TS J Am Chem Soc; 2008 Apr; 130(14):4795-807. PubMed ID: 18345673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]