These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 11497675)

  • 21. Multistable chimera states in a smallest population of three coupled oscillators.
    Ragavan A; Manoranjani M; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Apr; 107(4-1):044209. PubMed ID: 37198793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small chimera states without multistability in a globally delay-coupled network of four lasers.
    Röhm A; Böhm F; Lüdge K
    Phys Rev E; 2016 Oct; 94(4-1):042204. PubMed ID: 27841464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronous slowing down in coupled logistic maps via random network topology.
    Wang SJ; Du RH; Jin T; Wu XS; Qu SX
    Sci Rep; 2016 Mar; 6():23448. PubMed ID: 27021897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of a leader on cluster synchronization.
    Jalan S; Singh A; Acharyya S; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022901. PubMed ID: 25768564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clustering as a prerequisite for chimera states in globally coupled systems.
    Schmidt L; Krischer K
    Phys Rev Lett; 2015 Jan; 114(3):034101. PubMed ID: 25658999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable heteroclinic cycles for ensembles of chaotic oscillators.
    Kuznetsov AS; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026201. PubMed ID: 12241261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chimeras and clusters in networks of hyperbolic chaotic oscillators.
    Cano AV; Cosenza MG
    Phys Rev E; 2017 Mar; 95(3-1):030202. PubMed ID: 28415379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regularization of dynamics in an ensemble of nondiffusively coupled chaotic elements.
    Kuznetsov AS; Shalfeev VD; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046209. PubMed ID: 16383514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.
    Lee WS; Ott E; Antonsen TM
    Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators.
    Lai YM; Porter MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012905. PubMed ID: 23944536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chaotic transients, riddled basins, and stochastic transitions in coupled periodic logistic maps.
    Bashkirtseva I; Ryashko L
    Chaos; 2021 May; 31(5):053101. PubMed ID: 34240946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase synchronization of two-dimensional lattices of coupled chaotic maps.
    Hu B; Liu Z
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2114-8. PubMed ID: 11088677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators.
    Li BW; Fu C; Zhang H; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046207. PubMed ID: 23214663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chimeralike states in an ensemble of globally coupled oscillators.
    Yeldesbay A; Pikovsky A; Rosenblum M
    Phys Rev Lett; 2014 Apr; 112(14):144103. PubMed ID: 24765969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism for the partial synchronization in three coupled chaotic systems.
    Lim W; Kim SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036221. PubMed ID: 15903560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. First-order synchronization transition in locally coupled maps.
    Mohanty PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045202. PubMed ID: 15600449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resonance tongues in a system of globally coupled FitzHugh-Nagumo oscillators with time-periodic coupling strength.
    Bîrzu A; Krischer K
    Chaos; 2010 Dec; 20(4):043114. PubMed ID: 21198084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasiperiodic, periodic, and slowing-down states of coupled heteroclinic cycles.
    Li D; Cross MC; Zhou C; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016215. PubMed ID: 22400651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interacting stochastic oscillators.
    Zhang J; Yuan Z; Wang J; Zhou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021101. PubMed ID: 18351981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transition to coherence in populations of coupled chaotic oscillators: a linear response approach.
    Topaj D; Kye WH; Pikovsky A
    Phys Rev Lett; 2001 Aug; 87(7):074101. PubMed ID: 11497892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.