These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11497676)

  • 1. Phase synchronization of diffusively coupled Rössler oscillators with funnel attractors.
    Yang HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026206. PubMed ID: 11497676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization patterns in geometrically frustrated rings of relaxation oscillators.
    Goldstein D; Giver M; Chakraborty B
    Chaos; 2015 Dec; 25(12):123109. PubMed ID: 26723148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antiphase and in-phase synchronization of nonlinear oscillators: the Huygens's clocks system.
    Dilão R
    Chaos; 2009 Jun; 19(2):023118. PubMed ID: 19566253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial synchronization on a network with different classes of oscillators.
    Gräve de Oliveira E; Braun T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):067201. PubMed ID: 18233946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators.
    Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of zero-lag long-range synchronization via dynamical relaying.
    Vieira Mde S
    Chaos; 2010 Mar; 20(1):013131. PubMed ID: 20370286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence of anomalous phase synchronization in two diffusively coupled Chua oscillators.
    Dana SK; Blasius B; Kurths J
    Chaos; 2006 Jun; 16(2):023111. PubMed ID: 16822014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators.
    Shabunin A; Feudel U; Astakhov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability.
    Punetha N; Ramaswamy R; Atay FM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of multistability in the transition to chaotic phase synchronization.
    Postnov DE; Vadivasova TE; Sosnovtseva OV; Balanov AG; Anishchenko VS; Mosekilde E
    Chaos; 1999 Mar; 9(1):227-232. PubMed ID: 12779818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization regimes in conjugate coupled chaotic oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Chaos; 2009 Sep; 19(3):033143. PubMed ID: 19792023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition to intermittent chaotic synchronization.
    Zhao L; Lai YC; Shih CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036212. PubMed ID: 16241553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillation death in diffusively coupled oscillators by local repulsive link.
    Hens CR; Olusola OI; Pal P; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034902. PubMed ID: 24125390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of coupled modified Rössler oscillators: The role of nonisochronicity parameter.
    Ramya C; Gopal R; Suresh R; Chandrasekar VK
    Chaos; 2021 May; 31(5):053113. PubMed ID: 34240955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of electrochemical oscillators with differential coupling.
    Wickramasinghe M; Kiss IZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Periodic phase synchronization in coupled chaotic oscillators".
    Pazó D; Matías MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):038201, discussion 038202. PubMed ID: 16605708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of remote synchronization in complex networks.
    Gambuzza LV; Cardillo A; Fiasconaro A; Fortuna L; Gómez-Gardeñes J; Frasca M
    Chaos; 2013 Dec; 23(4):043103. PubMed ID: 24387542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three types of transitions to phase synchronization in coupled chaotic oscillators.
    Osipov GV; Hu B; Zhou C; Ivanchenko MV; Kurths J
    Phys Rev Lett; 2003 Jul; 91(2):024101. PubMed ID: 12906481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging and clustering in globally coupled oscillators.
    Daido H; Nakanishi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056206. PubMed ID: 17677147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.