These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 11497688)

  • 21. Condensation in the phase space and network topology during transition from chaos to order in turbulent thermoacoustic systems.
    Tandon S; Sujith RI
    Chaos; 2021 Apr; 31(4):043126. PubMed ID: 34251230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics.
    Buhl M; Kennel MB
    Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics of impurities in a three-dimensional volume-preserving map.
    Das S; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012906. PubMed ID: 25122359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noise-aided control of chaotic dynamics in a logistic map.
    Escalona J; Parmananda P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5987-9. PubMed ID: 11031665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Easy-to-implement method to target nonlinear systems.
    Baptista MS; Caldas IL
    Chaos; 1998 Mar; 8(1):290-299. PubMed ID: 12779732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Weak chaos and the "melting transition" in a confined microplasma system.
    Antonopoulos C; Basios V; Bountis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016211. PubMed ID: 20365450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling spatiotemporal chaos via phase space compression.
    Zhang X; Shen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046212. PubMed ID: 11308935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chaos in the one-dimensional gravitational three-body problem.
    Hietarinta J; Mikkola S
    Chaos; 1993 Apr; 3(2):183-203. PubMed ID: 12780027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map.
    Akaishi A; Shudo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066211. PubMed ID: 20365258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling chaos in unidimensional maps using macroevolutionary algorithms.
    Marín J; Solé RV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026207. PubMed ID: 11863632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localization properties of groups of eigenstates in chaotic systems.
    Wisniacki DA; Borondo F; Vergini E; Benito RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066220. PubMed ID: 11415219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems.
    Kobayashi MU; Saiki Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022904. PubMed ID: 25353542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos.
    Cartwright JH; Magnasco MO; Piro O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):045203. PubMed ID: 12005907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying chaos using Lagrangian descriptors.
    Hillebrand M; Zimper S; Ngapasare A; Katsanikas M; Wiggins S; Skokos C
    Chaos; 2022 Dec; 32(12):123122. PubMed ID: 36587363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Method for measuring unstable dimension variability from time series.
    McCullen NJ; Moresco P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046203. PubMed ID: 16711913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. True orbit simulation of piecewise linear and linear fractional maps of arbitrary dimension using algebraic numbers.
    Saito A; Yasutomi S; Tamura J; Ito S
    Chaos; 2015 Jun; 25(6):063103. PubMed ID: 26117097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space.
    Zou Y; Donner RV; Thiel M; Kurths J
    Chaos; 2016 Feb; 26(2):023120. PubMed ID: 26931601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topological characterization of deterministic chaos: enforcing orientation preservation.
    Lefranc M; Morant PE; Nizette M
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1865):559-67. PubMed ID: 17698472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling dissipative and Hamiltonian chaos by a constant periodic pulse method.
    Xu H; Wang G; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016201. PubMed ID: 11461361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.