These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 11497700)
1. Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell. Meignin L; Ern P; Gondret P; Rabaud M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026308. PubMed ID: 11497700 [TBL] [Abstract][Full Text] [Related]
2. Interfacial instability of two superimposed immiscible viscous fluids in a vertical Hele-Shaw cell under horizontal periodic oscillations. Bouchgl J; Aniss S; Souhar M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023027. PubMed ID: 24032943 [TBL] [Abstract][Full Text] [Related]
3. Parallel flow in hele-shaw cells with ferrofluids. Miranda JA; Widom M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):2114-7. PubMed ID: 11046508 [TBL] [Abstract][Full Text] [Related]
4. Subcritical Kelvin-Helmholtz instability in a Hele-Shaw cell. Meignin L; Gondret P; Ruyer-Quil C; Rabaud M Phys Rev Lett; 2003 Jun; 90(23):234502. PubMed ID: 12857263 [TBL] [Abstract][Full Text] [Related]
5. Gravity-driven instability in a spherical Hele-Shaw cell. Miranda JA; Parisio F; Moraes F; Widom M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016311. PubMed ID: 11304357 [TBL] [Abstract][Full Text] [Related]
6. Saffman-Taylor problem on a sphere. Parisio F; Moraes F; Miranda JA; Widom M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036307. PubMed ID: 11308768 [TBL] [Abstract][Full Text] [Related]
7. Structural and dynamical characterization of Hele-Shaw viscous fingering. Grosfils P; Boon JP; Chin J; Boek ES Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1723-34. PubMed ID: 15306442 [TBL] [Abstract][Full Text] [Related]
8. Effect of Hele-Shaw cell gap on radial viscous fingering. Nand S; Sharma V; Das SK; Padhee SS; Mishra M Sci Rep; 2022 Nov; 12(1):18967. PubMed ID: 36347906 [TBL] [Abstract][Full Text] [Related]
9. Inertially driven buckling and overturning of jets in a Hele-Shaw cell. Pesci AI; Porter MA; Goldstein RE Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056305. PubMed ID: 14682882 [TBL] [Abstract][Full Text] [Related]
10. Effects of circular rigid boundaries and Coriolis forces on the interfacial instability in a rotating annular Hele-Shaw cell. Abidate A; Aniss S; Caballina O; Souhar M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046307. PubMed ID: 17500993 [TBL] [Abstract][Full Text] [Related]
11. Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell. Martin J; Rakotomalala N; Salin D; Böckmann M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051605. PubMed ID: 12059568 [TBL] [Abstract][Full Text] [Related]
12. Controlling Viscous Fingering Using Time-Dependent Strategies. Zheng Z; Kim H; Stone HA Phys Rev Lett; 2015 Oct; 115(17):174501. PubMed ID: 26551117 [TBL] [Abstract][Full Text] [Related]
13. Rayleigh-Taylor instability for immiscible fluids of arbitrary viscosities: a magnetic levitation investigation and theoretical model. Carlès P; Huang Z; Carbone G; Rosenblatt C Phys Rev Lett; 2006 Mar; 96(10):104501. PubMed ID: 16605739 [TBL] [Abstract][Full Text] [Related]
14. Wavelength selection in Hele-Shaw flows: a maximum-amplitude criterion. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013016. PubMed ID: 23944558 [TBL] [Abstract][Full Text] [Related]
15. Rotating hele-shaw cells with ferrofluids. Miranda JA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2985-8. PubMed ID: 11088789 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of liquids with high viscosity contrast in unevenly rotating Hele-Shaw cell. Kozlov V; Petukhova M; Kozlov N Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220082. PubMed ID: 36842976 [TBL] [Abstract][Full Text] [Related]
17. Long-time simulations of the Kelvin-Helmholtz instability using an adaptive vortex method. Sohn SI; Yoon D; Hwang W Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046711. PubMed ID: 21230416 [TBL] [Abstract][Full Text] [Related]
18. Rayleigh-taylor instability with magnetic fluids: experiment and theory. Pacitto G; Flament C; Bacri JC; Widom M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7941-8. PubMed ID: 11138077 [TBL] [Abstract][Full Text] [Related]
19. Growth dynamics of a liquid crystal at the three- to two-dimensional crossover in a hele-shaw cell. Chan HK; Dierking I J Phys Chem B; 2007 Nov; 111(47):13383-5. PubMed ID: 17979268 [TBL] [Abstract][Full Text] [Related]
20. Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations. Lyubimova TP; Lyubimov DV; Sadilov ES; Popov DM Phys Rev E; 2017 Jul; 96(1-1):013108. PubMed ID: 29347178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]