These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11497886)

  • 1. Test of nuclear wave functions for pseudospin symmetry.
    Ginocchio JN; Leviatan A
    Phys Rev Lett; 2001 Aug; 87(7):072502. PubMed ID: 11497886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. U(3) and pseudo-U(3) symmetry of the relativistic harmonic oscillator.
    Ginocchio JN
    Phys Rev Lett; 2005 Dec; 95(25):252501. PubMed ID: 16384452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudospin symmetry in single particle resonant states.
    Lu BN; Zhao EG; Zhou SG
    Phys Rev Lett; 2012 Aug; 109(7):072501. PubMed ID: 23006363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isospin asymmetry in the pseudospin dynamical symmetry.
    Alberto P; Fiolhais M; Malheiro M; Delfino A; Chiapparini M
    Phys Rev Lett; 2001 May; 86(22):5015-8. PubMed ID: 11384409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetries and supersymmetries of the dirac hamiltonian with axially deformed scalar and vector potentials.
    Leviatan A
    Phys Rev Lett; 2009 Jul; 103(4):042502. PubMed ID: 19659345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Valley Landau-Zener-Bloch Oscillations and Pseudospin Imbalance in Photonic Graphene.
    Sun Y; Leykam D; Nenni S; Song D; Chen H; Chong YD; Chen Z
    Phys Rev Lett; 2018 Jul; 121(3):033904. PubMed ID: 30085826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supersymmetric patterns in the pseudospin, spin, and coulomb limits of the dirac equation with scalar and vector potentials.
    Leviatan A
    Phys Rev Lett; 2004 May; 92(20):202501. PubMed ID: 15169345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudospin-1 Physics of Photonic Crystals.
    Fang A; Zhang ZQ; Louie SG; Chan CT
    Research (Wash D C); 2019; 2019():3054062. PubMed ID: 31549055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin symmetry in the antinucleon spectrum.
    Zhou SG; Meng J; Ring P
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):262501. PubMed ID: 14754045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New generation of massless Dirac fermions in graphene under external periodic potentials.
    Park CH; Yang L; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2008 Sep; 101(12):126804. PubMed ID: 18851401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin and pseudospin solutions to Dirac equation and its thermodynamic properties using hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential.
    Okon IB; Omugbe E; Antia AD; Onate CA; Akpabio LE; Osafile OE
    Sci Rep; 2021 Jan; 11(1):892. PubMed ID: 33441567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the symmetries of the Dirac Hamiltonian with axially deformed scalar and vector potentials by similarity renormalization group.
    Guo JY; Chen SW; Niu ZM; Li DP; Liu Q
    Phys Rev Lett; 2014 Feb; 112(6):062502. PubMed ID: 24580689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional supersymmetric quantum mechanics: a scalar Hamiltonian approach to excited states by the imaginary time propagation method.
    Chou CC; Kouri DJ
    J Phys Chem A; 2013 Apr; 117(16):3449-57. PubMed ID: 23531036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation.
    Chibotaru LF; Ungur L
    J Chem Phys; 2012 Aug; 137(6):064112. PubMed ID: 22897260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Dirac cones in carbon allotropes with square symmetry.
    Wang J; Huang H; Duan W; Liu Z
    J Chem Phys; 2013 Nov; 139(18):184701. PubMed ID: 24320285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.
    Yu H; Liu GB; Gong P; Xu X; Yao W
    Nat Commun; 2014 May; 5():3876. PubMed ID: 24821438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relativistic explicit correlation: coalescence conditions and practical suggestions.
    Li Z; Shao S; Liu W
    J Chem Phys; 2012 Apr; 136(14):144117. PubMed ID: 22502511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling pseudospin and angular momentum in photonic graphene.
    Song D; Paltoglou V; Liu S; Zhu Y; Gallardo D; Tang L; Xu J; Ablowitz M; Efremidis NK; Chen Z
    Nat Commun; 2015 Feb; 6():6272. PubMed ID: 25687645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M; Wu Z
    Nanoscale; 2015 Feb; 7(8):3645-50. PubMed ID: 25636026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dirac equation and thermodynamic properties with the Modified Kratzer potential.
    Onyenegecha CP; Njoku IJ; Omame A; Okereke CJ; Onyeocha E
    Heliyon; 2021 Sep; 7(9):e08023. PubMed ID: 34611561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.