These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 11497892)
1. Transition to coherence in populations of coupled chaotic oscillators: a linear response approach. Topaj D; Kye WH; Pikovsky A Phys Rev Lett; 2001 Aug; 87(7):074101. PubMed ID: 11497892 [TBL] [Abstract][Full Text] [Related]
2. Onset of synchronization in systems of globally coupled chaotic maps. Baek SJ; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066210. PubMed ID: 15244711 [TBL] [Abstract][Full Text] [Related]
3. Loss of coherence in a system of globally coupled maps. Popovych O; Maistrenko Y; Mosekilde E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026205. PubMed ID: 11497675 [TBL] [Abstract][Full Text] [Related]
4. Lyapunov analysis captures the collective dynamics of large chaotic systems. Takeuchi KA; Ginelli F; Chaté H Phys Rev Lett; 2009 Oct; 103(15):154103. PubMed ID: 19905641 [TBL] [Abstract][Full Text] [Related]
5. Coherent regimes of globally coupled dynamical systems. De Monte S; d'Ovidio F; Mosekilde E Phys Rev Lett; 2003 Feb; 90(5):054102. PubMed ID: 12633359 [TBL] [Abstract][Full Text] [Related]
6. Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators. Li BW; Fu C; Zhang H; Wang X Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046207. PubMed ID: 23214663 [TBL] [Abstract][Full Text] [Related]
7. Experiments on oscillator ensembles with global nonlinear coupling. Temirbayev AA; Zhanabaev ZZh; Tarasov SB; Ponomarenko VI; Rosenblum M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):015204. PubMed ID: 22400613 [TBL] [Abstract][Full Text] [Related]
8. Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps. Pingel D; Schmelcher P; Diakonos FK Chaos; 1999 Jun; 9(2):357-366. PubMed ID: 12779834 [TBL] [Abstract][Full Text] [Related]
9. Averaging approach to phase coherence of uncoupled limit-cycle oscillators receiving common random impulses. Arai K; Nakao H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066220. PubMed ID: 19256938 [TBL] [Abstract][Full Text] [Related]
10. Explosive death induced by mean-field diffusion in identical oscillators. Verma UK; Sharma A; Kamal NK; Kurths J; Shrimali MD Sci Rep; 2017 Aug; 7(1):7936. PubMed ID: 28801562 [TBL] [Abstract][Full Text] [Related]
11. Transition from spatial coherence to incoherence in coupled chaotic systems. Omelchenko I; Riemenschneider B; Hövel P; Maistrenko Y; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026212. PubMed ID: 22463304 [TBL] [Abstract][Full Text] [Related]
12. Controlling synchronization in an ensemble of globally coupled oscillators. Rosenblum MG; Pikovsky AS Phys Rev Lett; 2004 Mar; 92(11):114102. PubMed ID: 15089140 [TBL] [Abstract][Full Text] [Related]
13. Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: an experimental study. Temirbayev AA; Nalibayev YD; Zhanabaev ZZh; Ponomarenko VI; Rosenblum M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062917. PubMed ID: 23848758 [TBL] [Abstract][Full Text] [Related]
14. Periodically forced ensemble of nonlinearly coupled oscillators: from partial to full synchrony. Baibolatov Y; Rosenblum M; Zhanabaev ZZh; Kyzgarina M; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046211. PubMed ID: 19905419 [TBL] [Abstract][Full Text] [Related]
15. Transition to chaos of coupled oscillators: an operator fidelity susceptibility study. Jacobson NT; Giorda P; Zanardi P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056204. PubMed ID: 21230560 [TBL] [Abstract][Full Text] [Related]
16. Transitions from chimeras to coherence: An analytical approach by means of the coherent stability function. Rakshit S; Faghani Z; Parastesh F; Panahi S; Jafari S; Ghosh D; Perc M Phys Rev E; 2019 Jul; 100(1-1):012315. PubMed ID: 31499842 [TBL] [Abstract][Full Text] [Related]
17. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators. Roberts DC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336 [TBL] [Abstract][Full Text] [Related]
18. Stimulus-locked responses of two phase oscillators coupled with delayed feedback. Krachkovskyi V; Popovych OV; Tass PA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066220. PubMed ID: 16906959 [TBL] [Abstract][Full Text] [Related]
19. Dynamic control by sinusoidal perturbation and by Gaussian noise of a system of two nonlinear oscillators: computation and experimental results. Cristescu CP; Stan C; Alexandroaei D Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016613. PubMed ID: 15324195 [TBL] [Abstract][Full Text] [Related]
20. Transcritical riddling in a system of coupled maps. Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]