These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11497951)

  • 21. On the formation of Friedlander waves in a compressed-gas-driven shock tube.
    Tasissa AF; Hautefeuille M; Fitek JH; Radovitzky RA
    Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150611. PubMed ID: 27118888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blast wave energy diagnostic.
    Tierney TE; Tierney HE; Idzorek GC; Watt RG; Peterson RR; Peterson DL; Fryer CL; Lopez MR; Jones MC; Sinars D; Rochau GA; Bailey JE
    Rev Sci Instrum; 2008 Oct; 79(10):10E919. PubMed ID: 19044574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction between supersonic disintegrating liquid jets and their shock waves.
    Im KS; Cheong SK; Liu X; Wang J; Lai MC; Tate MW; Ercan A; Renzi MJ; Schuette DR; Gruner SM
    Phys Rev Lett; 2009 Feb; 102(7):074501. PubMed ID: 19257675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shock wave formation in radiative plasmas.
    Garcia-Rubio F; Tranchant V; Hansen EC; Reyes A; Tabassum R; Rahman HU; Ney P; Ruskov E; Tzeferacos P
    Phys Rev E; 2024 Jun; 109(6-2):065206. PubMed ID: 39020916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active galaxies and radiative heating.
    Ostriker JP; Ciotti L
    Philos Trans A Math Phys Eng Sci; 2005 Mar; 363(1828):667-83; discussion 683. PubMed ID: 15681285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. External front instabilities induced by a shocked particle ring.
    Rodriguez V; Saurel R; Jourdan G; Houas L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043013. PubMed ID: 25375599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.
    Sirmas N; Radulescu MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023003. PubMed ID: 25768593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of collisionality and radiative cooling in supersonic plasma jet collisions of different materials.
    Collins GW; Valenzuela JC; Speliotopoulos CA; Aybar N; Conti F; Beg FN; Tzeferacos P; Khiar B; Bott AFA; Gregori G
    Phys Rev E; 2020 Feb; 101(2-1):023205. PubMed ID: 32168644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of the decay rate of single-frequency perturbations on blast waves.
    Edens AD; Ditmire T; Hansen JF; Edwards MJ; Adams RG; Rambo PK; Ruggles L; Smith IC; Porter JL
    Phys Rev Lett; 2005 Dec; 95(24):244503. PubMed ID: 16384385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a controlled shock wave delivered by a pneumatic table-top gas driven shock tube.
    Swietek B; Skotak M; Chandra N; Pfister BJ
    Rev Sci Instrum; 2019 Jul; 90(7):075116. PubMed ID: 31370428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of a hydrodynamically driven, radiative-precursor shock.
    Keiter PA; Drake RP; Perry TS; Robey HF; Remington BA; Iglesias CA; Wallace RJ; Knauer J
    Phys Rev Lett; 2002 Oct; 89(16):165003. PubMed ID: 12398730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unveiling the nonadiabatic rotational excitation process in a symmetric-top molecule induced by two intense laser pulses.
    Baek D; Hasegawa H; Ohshima Y
    J Chem Phys; 2011 Jun; 134(22):224302. PubMed ID: 21682509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments.
    Espinosa G; Rodríguez R; Gil JM; Suzuki-Vidal F; Lebedev SV; Ciardi A; Rubiano JG; Martel P
    Phys Rev E; 2017 Mar; 95(3-1):033201. PubMed ID: 28415177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiative effects driven by shock waves in cavity-less four-wave mixing combs.
    Conforti M; Trillo S
    Opt Lett; 2014 Oct; 39(19):5760-3. PubMed ID: 25360978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of radiative shock properties by x-ray Thomson scattering.
    Visco AJ; Drake RP; Glenzer SH; Döppner T; Gregori G; Froula DH; Grosskopf MJ
    Phys Rev Lett; 2012 Apr; 108(14):145001. PubMed ID: 22540798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Note: A table-top blast driven shock tube.
    Courtney MW; Courtney AC
    Rev Sci Instrum; 2010 Dec; 81(12):126103. PubMed ID: 21198058
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental investigation of nanosecond laser-induced shock waves in water using multiple excitation beams.
    Yang Z; Bao H; Dai L; Zhang H; Lu J
    Opt Express; 2023 Jun; 31(13):21845-21862. PubMed ID: 37381272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of a blast on the mandible and teeth: transverse fractures and their management.
    Shuker ST
    Br J Oral Maxillofac Surg; 2008 Oct; 46(7):547-51. PubMed ID: 18440677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Limiting Temperatures of Spherical Shock Wave Implosion.
    Liverts M; Apazidis N
    Phys Rev Lett; 2016 Jan; 116(1):014501. PubMed ID: 26799021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tracking propagation of ultrashort intense laser pulses in gases via probing of ionization.
    Gizzi LA; Betti S; Galimberti M; Giulietti A; Giulietti D; Labate L; Levato T; Tomassini P; Monot P; Ceccotti T; De Oliveira P; Martin P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056405. PubMed ID: 19518574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.