These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11497961)

  • 1. Ionic conduction in glass: new information on the interrelation between the "Jonscher behavior" and the "nearly constant-loss behavior" from broadband conductivity spectra.
    Roling B; Martiny C; Murugavel S
    Phys Rev Lett; 2001 Aug; 87(8):085901. PubMed ID: 11497961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Ionic conduction in glass: new information on the interrelation between the 'Jonscher behavior' and the 'Nearly constant-loss behavior' from broadband conductivity spectra".
    León C; Rivera A; Santamaría J; Moynihan CT; Ngai KL
    Phys Rev Lett; 2002 Aug; 89(7):079601; author reply 079602. PubMed ID: 12190563
    [No Abstract]   [Full Text] [Related]  

  • 3. Ion relaxation dynamics and nearly constant loss behavior in polymer electrolyte.
    Natesan B; Karan NK; Katiyar RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):042801. PubMed ID: 17155114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nearly constant dielectric loss behavior in ionomers.
    Linares A; Cánovas MJ; Ezquerra TA
    J Chem Phys; 2008 Jun; 128(24):244908. PubMed ID: 18601384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion trapping model of the ac conductivity in disordered solids.
    Khamzin AA; Nikitin AS
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of polaron-hopping-based a.c. conduction in semiconducting STS (Se-Te-Sn) glass by silver incorporation.
    Srivastava A; Mehta N
    Dalton Trans; 2018 Jul; 47(30):10187-10194. PubMed ID: 30014053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between I-Ag distance and ionic conductivity in AgI fast-ion-conducting glasses.
    Sanson A; Rocca F; Armellini C; Dalba G; Fornasini P; Grisenti R
    Phys Rev Lett; 2008 Oct; 101(15):155901. PubMed ID: 18999615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Arrhenius ionic conductivities in glasses due to a distribution of activation energies.
    Bischoff C; Schuller K; Beckman SP; Martin SW
    Phys Rev Lett; 2012 Aug; 109(7):075901. PubMed ID: 23006384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ion Dissociation on DC Conductivity and Silver Nanoparticle Formation in PVA:AgNt Based Polymer Electrolytes: Deep Insights to Ion Transport Mechanism.
    Aziz SB; Abdullah RM; Rasheed MA; Ahmed HM
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing two contributions to the nearly constant loss in ion-conducting glasses.
    Sidebottom DL; Murray-Krezan CM
    Phys Rev Lett; 2002 Nov; 89(19):195901. PubMed ID: 12443129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic conductivity of mixed glass former 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)] glasses.
    Christensen R; Olson G; Martin SW
    J Phys Chem B; 2013 Dec; 117(51):16577-86. PubMed ID: 24295052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low temperature conductivity and ion dynamics in silver iodide-silver metaphosphate glasses.
    Badr L
    Phys Chem Chem Phys; 2017 Aug; 19(32):21527-21531. PubMed ID: 28762424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts.
    Tripathy SN; Wojnarowska Z; Knapik J; Shirota H; Biswas R; Paluch M
    J Chem Phys; 2015 May; 142(18):184504. PubMed ID: 25978897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton dynamics in superprotonic Rb
    Ławniczak P; Petzelt J; Bovtun V; Savinov M; Kempa M; Nuzhnyy D; Pawłowski A
    J Phys Condens Matter; 2020 Aug; 32(46):. PubMed ID: 32756024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nearly constant loss effects in borate glasses.
    Laughman DM; Banhatti RD; Funke K
    Phys Chem Chem Phys; 2009 May; 11(17):3158-67. PubMed ID: 19370211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic transport behavior of BaO containing sodium borosilicate glasses.
    Mishra RK; Mishra R; Kaushik CP; Tyagi AK; Tomar BS; Das D; Raj K
    J Hazard Mater; 2009 Jan; 161(2-3):1450-3. PubMed ID: 18562091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of cage decay, near constant loss, and crossover to cooperative ion hopping in lithium metasilicate.
    Habasaki J; Ngai KL; Hiwatari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021205. PubMed ID: 12241162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.
    Wojnarowska Z; Swiety-Pospiech A; Grzybowska K; Hawelek L; Paluch M; Ngai KL
    J Chem Phys; 2012 Apr; 136(16):164507. PubMed ID: 22559496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonuniversal features of the ac conductivity in ion conducting glasses.
    Roling B; Martiny C
    Phys Rev Lett; 2000 Aug; 85(6):1274-7. PubMed ID: 10991530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New mixed alkali effect in the ac conductivity of ion-conducting glasses.
    Cramer C; Brunklaus S; Ratai E; Gao Y
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):266601. PubMed ID: 14754075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.