BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11498038)

  • 21. A lipid dependence in the formation of twin ion channels.
    Al-Momani L; Reiss P; Koert U
    Biochem Biophys Res Commun; 2005 Mar; 328(1):342-7. PubMed ID: 15670789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Black lipid membranes of tetraether lipids from Thermoplasma acidophilum.
    Stern J; Freisleben HJ; Janku S; Ring K
    Biochim Biophys Acta; 1992 Oct; 1128(2-3):227-36. PubMed ID: 1420295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
    O'Connell AM; Koeppe RE; Andersen OS
    Science; 1990 Nov; 250(4985):1256-9. PubMed ID: 1700867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides.
    He L; Robertson JW; Li J; Kärcher I; Schiller SM; Knoll W; Naumann R
    Langmuir; 2005 Dec; 21(25):11666-72. PubMed ID: 16316098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers.
    Suchyna TM; Tape SE; Koeppe RE; Andersen OS; Sachs F; Gottlieb PA
    Nature; 2004 Jul; 430(6996):235-40. PubMed ID: 15241420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Fusobacterium nucleatum major outer-membrane protein (FomA) forms trimeric, water-filled channels in lipid bilayer membranes.
    Kleivdal H; Benz R; Jensen HB
    Eur J Biochem; 1995 Oct; 233(1):310-6. PubMed ID: 7588760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Undulation instability of lipid membranes under an electric field.
    Sens P; Isambert H
    Phys Rev Lett; 2002 Mar; 88(12):128102. PubMed ID: 11909504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes.
    Prenner EJ; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):201-21. PubMed ID: 10590309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale modeling of lipids and lipid bilayers.
    Lyubartsev AP
    Eur Biophys J; 2005 Dec; 35(1):53-61. PubMed ID: 16133633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of single ion channel activity on a chip using tethered bilayer membranes.
    Andersson M; Keizer HM; Zhu C; Fine D; Dodabalapur A; Duran RS
    Langmuir; 2007 Mar; 23(6):2924-7. PubMed ID: 17286424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes.
    Maget-Dana R
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):109-40. PubMed ID: 10590305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophobic coupling of lipid bilayer energetics to channel function.
    Goforth RL; Chi AK; Greathouse DV; Providence LL; Koeppe RE; Andersen OS
    J Gen Physiol; 2003 May; 121(5):477-93. PubMed ID: 12719487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid bilayer electrostatic energy, curvature stress, and assembly of gramicidin channels.
    Lundbaek JA; Maer AM; Andersen OS
    Biochemistry; 1997 May; 36(19):5695-701. PubMed ID: 9153409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated formation of lipid-bilayer membranes in a microfluidic device.
    Malmstadt N; Nash MA; Purnell RF; Schmidt JJ
    Nano Lett; 2006 Sep; 6(9):1961-5. PubMed ID: 16968008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of the hydrophilic spacer length on the functionality of a mercury-supported tethered bilayer lipid membrane.
    Becucci L; Faragher RJ; Schwan A
    Bioelectrochemistry; 2015 Feb; 101():92-6. PubMed ID: 25180906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface.
    Laredo T; Dutcher JR; Lipkowski J
    Langmuir; 2011 Aug; 27(16):10072-87. PubMed ID: 21707110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane surface-charge titration probed by gramicidin A channel conductance.
    Rostovtseva TK; Aguilella VM; Vodyanoy I; Bezrukov SM; Parsegian VA
    Biophys J; 1998 Oct; 75(4):1783-92. PubMed ID: 9746520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. X-ray studies on the interaction of the antimicrobial peptide gramicidin S with microbial lipid extracts: evidence for cubic phase formation.
    Staudegger E; Prenner EJ; Kriechbaum M; Degovics G; Lewis RN; McElhaney RN; Lohner K
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):213-30. PubMed ID: 11018666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of proton transfer in the water wire of dioxolane-linked gramicidin channels by lipid membranes.
    de Godoy CM; Cukierman S
    Biophys J; 2001 Sep; 81(3):1430-8. PubMed ID: 11509357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.