BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 11498049)

  • 1. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels.
    Kim D; Song I; Keum S; Lee T; Jeong MJ; Kim SS; McEnery MW; Shin HS
    Neuron; 2001 Jul; 31(1):35-45. PubMed ID: 11498049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. It takes T to tango.
    Sohal VS; Huguenard JR
    Neuron; 2001 Jul; 31(1):3-4. PubMed ID: 11498042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice.
    Lee SE; Lee J; Latchoumane C; Lee B; Oh SJ; Saud ZA; Park C; Sun N; Cheong E; Chen CC; Choi EJ; Lee CJ; Shin HS
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11828-33. PubMed ID: 25071191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the alpha1G T-type calcium channel in spontaneous absence seizures in mutant mice.
    Song I; Kim D; Choi S; Sun M; Kim Y; Shin HS
    J Neurosci; 2004 Jun; 24(22):5249-57. PubMed ID: 15175395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of phospholipase C beta4 in thalamocortical relay nucleus leads to absence seizures.
    Cheong E; Zheng Y; Lee K; Lee J; Kim S; Sanati M; Lee S; Kim YS; Shin HS
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21912-7. PubMed ID: 19955421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adult loss of Cacna1a in mice recapitulates childhood absence epilepsy by distinct thalamic bursting mechanisms.
    Miao QL; Herlitze S; Mark MD; Noebels JL
    Brain; 2020 Jan; 143(1):161-174. PubMed ID: 31800012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca
    Cain SM; Tyson JR; Choi HB; Ko R; Lin PJC; LeDue JM; Powell KL; Bernier LP; Rungta RL; Yang Y; Cullis PR; O'Brien TJ; MacVicar BA; Snutch TP
    Epilepsia; 2018 Apr; 59(4):778-791. PubMed ID: 29468672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T-type Ca2+ channels in absence epilepsy.
    Cheong E; Shin HS
    Pflugers Arch; 2014 Apr; 466(4):719-34. PubMed ID: 24519464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy.
    Cain SM; Tyson JR; Jones KL; Snutch TP
    Pflugers Arch; 2015 Jun; 467(6):1367-82. PubMed ID: 24953239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of intralaminar thalamic nuclei to spike-and-wave-discharges during spontaneous seizures in a genetic rat model of absence epilepsy.
    Seidenbecher T; Pape HC
    Eur J Neurosci; 2001 Apr; 13(8):1537-46. PubMed ID: 11328348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma.
    Zhang Y; Vilaythong AP; Yoshor D; Noebels JL
    J Neurosci; 2004 Jun; 24(22):5239-48. PubMed ID: 15175394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cav2.3 channels are critical for oscillatory burst discharges in the reticular thalamus and absence epilepsy.
    Zaman T; Lee K; Park C; Paydar A; Choi JH; Cheong E; Lee CJ; Shin HS
    Neuron; 2011 Apr; 70(1):95-108. PubMed ID: 21482359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy.
    Ernst WL; Zhang Y; Yoo JW; Ernst SJ; Noebels JL
    J Neurosci; 2009 Feb; 29(6):1615-25. PubMed ID: 19211869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of generalized absence epilepsy.
    Futatsugi Y; Riviello JJ
    Brain Dev; 1998 Mar; 20(2):75-9. PubMed ID: 9545175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T-type Ca²⁺ channels in absence epilepsy.
    Cheong E; Shin HS
    Biochim Biophys Acta; 2013 Jul; 1828(7):1560-71. PubMed ID: 23416255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of GABA(A) and GABA(B) receptors to thalamic neuronal activity during spontaneous absence seizures in rats.
    Staak R; Pape HC
    J Neurosci; 2001 Feb; 21(4):1378-84. PubMed ID: 11160409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-regulation of adult thalamocortical neurons.
    Kasten MR; Anderson MP
    J Neurophysiol; 2015 Jul; 114(1):323-31. PubMed ID: 25948871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific contribution of human T-type calcium channel isotypes (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability.
    Chemin J; Monteil A; Perez-Reyes E; Bourinet E; Nargeot J; Lory P
    J Physiol; 2002 Apr; 540(Pt 1):3-14. PubMed ID: 11927664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The circuitry of atypical absence seizures in GABA(B)R1a transgenic mice.
    Wang X; Stewart L; Cortez MA; Wu Y; Velazquez JL; Liu CC; Shen L; Snead OC
    Pharmacol Biochem Behav; 2009 Nov; 94(1):124-30. PubMed ID: 19666047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.