These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11498346)

  • 1. Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations.
    Medhurst JL; Beadle CL
    Tree Physiol; 2001 Aug; 21(12-13):989-99. PubMed ID: 11498346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation.
    Medhurst JL; Battaglia M; Beadle CL
    Tree Physiol; 2002 Aug; 22(11):775-84. PubMed ID: 12184981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis.
    Pfautsch S; Aspinwall MJ; Drake JE; Chacon-Doria L; Langelaan RJA; Tissue DT; Tjoelker MG; Lens F
    Ann Bot; 2018 Jan; 121(1):129-141. PubMed ID: 29325002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of thinning on wood production, leaf area index, transpiration and canopy interception of a plantation subject to drought.
    McJannet D; Vertessy R
    Tree Physiol; 2001 Aug; 21(12-13):1001-8. PubMed ID: 11498347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees.
    Clearwater MJ; Meinzer FC
    Tree Physiol; 2001 Jul; 21(10):683-90. PubMed ID: 11446997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by high-intensity thinning.
    Medhurst JL; Beadle CL
    Tree Physiol; 2005 Aug; 25(8):981-91. PubMed ID: 15929929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observed and modelled leaf area index in Eucalyptus globulus plantations: tests of optimality and equilibrium hypotheses.
    White DA; Battaglia M; Mendham DS; Crombie DS; Kinal J; McGrath JF
    Tree Physiol; 2010 Jul; 30(7):831-44. PubMed ID: 20504775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the effect of physiological responses to green pruning on net biomass production of Eucalyptus nitens.
    Pinkard EA; Battaglia M; Beadle CL; Sands PJ
    Tree Physiol; 1999 Jan; 19(1):1-12. PubMed ID: 12651326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between sapwood and foliage area in alpine ash (Eucalyptus delegatensis) trees of different heights.
    Mokany K; McMurtrie RE; Atwell BJ; Keith H
    Tree Physiol; 2003 Oct; 23(14):949-58. PubMed ID: 12952781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.
    James SA; Bell DT
    Tree Physiol; 2000 Sep; 20(15):1007-18. PubMed ID: 11305455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architectural plasticity in young Eucalyptus marginata on restored bauxite mines and adjacent natural forest in south-western Australia.
    Bleby TM; Colquhoun IJ; Adams MA
    Tree Physiol; 2009 Aug; 29(8):1033-45. PubMed ID: 19556233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.
    Cernusak LA; Hutley LB; Beringer J; Tapper NJ
    Plant Cell Environ; 2006 Apr; 29(4):632-46. PubMed ID: 17080613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production.
    Ishii H; Ford ED; Boscolo ME; Manriquez AC; Wilson ME; Hinckley TM
    Tree Physiol; 2002 Jan; 22(1):31-40. PubMed ID: 11772553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit.
    Pita P; Pardos JA
    Tree Physiol; 2001 Jun; 21(9):599-607. PubMed ID: 11390304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance.
    Petit G; Pfautsch S; Anfodillo T; Adams MA
    New Phytol; 2010 Sep; 187(4):1146-1153. PubMed ID: 20497350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.
    Ferraz Filho AC; Mola-Yudego B; González-Olabarria JR; Scolforo JRS
    An Acad Bras Cienc; 2018; 90(1):255-265. PubMed ID: 29641753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.
    Ferraz Filho AC; Mola-Yudego B; González-Olabarria JR; Scolforo JRS
    An Acad Bras Cienc; 2018; 90(1):255-265. PubMed ID: 29412218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.