BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11498346)

  • 1. Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations.
    Medhurst JL; Beadle CL
    Tree Physiol; 2001 Aug; 21(12-13):989-99. PubMed ID: 11498346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation.
    Medhurst JL; Battaglia M; Beadle CL
    Tree Physiol; 2002 Aug; 22(11):775-84. PubMed ID: 12184981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis.
    Pfautsch S; Aspinwall MJ; Drake JE; Chacon-Doria L; Langelaan RJA; Tissue DT; Tjoelker MG; Lens F
    Ann Bot; 2018 Jan; 121(1):129-141. PubMed ID: 29325002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of thinning on wood production, leaf area index, transpiration and canopy interception of a plantation subject to drought.
    McJannet D; Vertessy R
    Tree Physiol; 2001 Aug; 21(12-13):1001-8. PubMed ID: 11498347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees.
    Clearwater MJ; Meinzer FC
    Tree Physiol; 2001 Jul; 21(10):683-90. PubMed ID: 11446997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by high-intensity thinning.
    Medhurst JL; Beadle CL
    Tree Physiol; 2005 Aug; 25(8):981-91. PubMed ID: 15929929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observed and modelled leaf area index in Eucalyptus globulus plantations: tests of optimality and equilibrium hypotheses.
    White DA; Battaglia M; Mendham DS; Crombie DS; Kinal J; McGrath JF
    Tree Physiol; 2010 Jul; 30(7):831-44. PubMed ID: 20504775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the effect of physiological responses to green pruning on net biomass production of Eucalyptus nitens.
    Pinkard EA; Battaglia M; Beadle CL; Sands PJ
    Tree Physiol; 1999 Jan; 19(1):1-12. PubMed ID: 12651326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between sapwood and foliage area in alpine ash (Eucalyptus delegatensis) trees of different heights.
    Mokany K; McMurtrie RE; Atwell BJ; Keith H
    Tree Physiol; 2003 Oct; 23(14):949-58. PubMed ID: 12952781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances.
    James SA; Bell DT
    Tree Physiol; 2000 Sep; 20(15):1007-18. PubMed ID: 11305455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architectural plasticity in young Eucalyptus marginata on restored bauxite mines and adjacent natural forest in south-western Australia.
    Bleby TM; Colquhoun IJ; Adams MA
    Tree Physiol; 2009 Aug; 29(8):1033-45. PubMed ID: 19556233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna.
    Cernusak LA; Hutley LB; Beringer J; Tapper NJ
    Plant Cell Environ; 2006 Apr; 29(4):632-46. PubMed ID: 17080613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production.
    Ishii H; Ford ED; Boscolo ME; Manriquez AC; Wilson ME; Hinckley TM
    Tree Physiol; 2002 Jan; 22(1):31-40. PubMed ID: 11772553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit.
    Pita P; Pardos JA
    Tree Physiol; 2001 Jun; 21(9):599-607. PubMed ID: 11390304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance.
    Petit G; Pfautsch S; Anfodillo T; Adams MA
    New Phytol; 2010 Sep; 187(4):1146-1153. PubMed ID: 20497350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.
    Ferraz Filho AC; Mola-Yudego B; González-Olabarria JR; Scolforo JRS
    An Acad Bras Cienc; 2018; 90(1):255-265. PubMed ID: 29641753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.
    Ferraz Filho AC; Mola-Yudego B; González-Olabarria JR; Scolforo JRS
    An Acad Bras Cienc; 2018; 90(1):255-265. PubMed ID: 29412218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.