BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11498347)

  • 1. Effects of thinning on wood production, leaf area index, transpiration and canopy interception of a plantation subject to drought.
    McJannet D; Vertessy R
    Tree Physiol; 2001 Aug; 21(12-13):1001-8. PubMed ID: 11498347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.
    Quentin AG; O'Grady AP; Beadle CL; Mohammed C; Pinkard EA
    Tree Physiol; 2012 Aug; 32(8):958-67. PubMed ID: 22874831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measured and predicted changes in tree and stand water use following high-intensity thinning of an 8-year-old Eucalyptus nitens plantation.
    Medhurst JL; Battaglia M; Beadle CL
    Tree Physiol; 2002 Aug; 22(11):775-84. PubMed ID: 12184981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation.
    Taylor PJ; Nuberg IK; Hatton TJ
    Tree Physiol; 2001 Apr; 21(6):403-8. PubMed ID: 11282580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
    Wright TE; Tausz M; Kasel S; Volkova L; Merchant A; Bennett LT
    Tree Physiol; 2012 Mar; 32(3):280-93. PubMed ID: 22367763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of a mature Pinus laricio plantation to a three-year restriction of water supply: structural and functional acclimation to drought.
    Cinnirella S; Magnani F; Saracino A; Borghetti M
    Tree Physiol; 2002 Jan; 22(1):21-30. PubMed ID: 11772552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water use by fast-growing Eucalyptus urophylla plantations in southern China.
    Morris J; Ningnan Z; Zengjiang Y; Collopy J; Daping X
    Tree Physiol; 2004 Sep; 24(9):1035-44. PubMed ID: 15234901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia.
    Schulze ED; Turner NC; Nicolle D; Schumacher J
    Tree Physiol; 2006 Apr; 26(4):479-92. PubMed ID: 16414927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations.
    Medhurst JL; Beadle CL
    Tree Physiol; 2001 Aug; 21(12-13):989-99. PubMed ID: 11498346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control.
    Eyles A; Worledge D; Sands P; Ottenschlaeger ML; Paterson SC; Mendham D; O'Grady AP
    Tree Physiol; 2012 Aug; 32(8):1008-20. PubMed ID: 22826381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit.
    Pita P; Pardos JA
    Tree Physiol; 2001 Jun; 21(9):599-607. PubMed ID: 11390304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased hydraulic constraints in Eucalyptus plantations fertilized with potassium.
    Guillemot J; Asensio V; Bordron B; Nouvellon Y; le Maire G; Bouillet JP; Domec JC; Delgado Rojas JS; Abreu-Junior CH; Battie-Laclau P; Cornut I; Germon A; De Moraes Gonçalves JL; Robin A; Laclau JP
    Plant Cell Environ; 2021 Sep; 44(9):2938-2950. PubMed ID: 34033133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna.
    Zeppel MJ; Lewis JD; Medlyn B; Barton CV; Duursma RA; Eamus D; Adams MA; Phillips N; Ellsworth DS; Forster MA; Tissue DT
    Tree Physiol; 2011 Sep; 31(9):932-44. PubMed ID: 21616926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daily patterns of stem size variation in irrigated and unirrigated Eucalyptus globulus.
    Drew DM; O'Grady AP; Downes GM; Read J; Worledge D
    Tree Physiol; 2008 Oct; 28(10):1573-81. PubMed ID: 18708339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observed and modelled leaf area index in Eucalyptus globulus plantations: tests of optimality and equilibrium hypotheses.
    White DA; Battaglia M; Mendham DS; Crombie DS; Kinal J; McGrath JF
    Tree Physiol; 2010 Jul; 30(7):831-44. PubMed ID: 20504775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies.
    Mitchell PJ; O'Grady AP; Tissue DT; Worledge D; Pinkard EA
    Tree Physiol; 2014 May; 34(5):443-58. PubMed ID: 24664613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.