These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 11499529)
21. Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. Morin FO; Takamura Y; Tamiya E J Biosci Bioeng; 2005 Aug; 100(2):131-43. PubMed ID: 16198254 [TBL] [Abstract][Full Text] [Related]
22. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes. Bakewell DJ; Morgan H IEEE Trans Nanobioscience; 2006 Jun; 5(2):139-46. PubMed ID: 16805110 [TBL] [Abstract][Full Text] [Related]
23. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ; Johnson MD; Kipke DR IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763 [TBL] [Abstract][Full Text] [Related]
24. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512 [TBL] [Abstract][Full Text] [Related]
25. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes. Bakewell DJ; Morgan H IEEE Trans Nanobioscience; 2006 Mar; 5(1):1-8. PubMed ID: 16570867 [TBL] [Abstract][Full Text] [Related]
27. Acute exposure to low-level CW and GSM-modulated 900 MHz radiofrequency does not affect Ba 2+ currents through voltage-gated calcium channels in rat cortical neurons. Platano D; Mesirca P; Paffi A; Pellegrino M; Liberti M; Apollonio F; Bersani F; Aicardi G Bioelectromagnetics; 2007 Dec; 28(8):599-607. PubMed ID: 17620299 [TBL] [Abstract][Full Text] [Related]
28. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856 [TBL] [Abstract][Full Text] [Related]
29. Measurement of neuronal activity of individual neurons after stroke in the rat using a microwire electrode array. Zhang X; Zhang RL; Zhang ZG; Chopp M J Neurosci Methods; 2007 May; 162(1-2):91-100. PubMed ID: 17287025 [TBL] [Abstract][Full Text] [Related]
30. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro. Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071 [TBL] [Abstract][Full Text] [Related]
32. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256 [TBL] [Abstract][Full Text] [Related]
33. A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential. Moulin C; Glière A; Barbier D; Joucla S; Yvert B; Mailley P; Guillemaud R IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):683-92. PubMed ID: 18270005 [TBL] [Abstract][Full Text] [Related]
34. A novel high channel-count system for acute multisite neuronal recordings. Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102 [TBL] [Abstract][Full Text] [Related]
35. Microelectrode array for chronic deep-brain microstimulation and recording. McCreery D; Lossinsky A; Pikov V; Liu X IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580 [TBL] [Abstract][Full Text] [Related]
36. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173 [TBL] [Abstract][Full Text] [Related]
37. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris. Sanchez-Jimenez A; Panetsos F; Murciano A Neuroscience; 2009 Apr; 160(1):212-26. PubMed ID: 19409209 [TBL] [Abstract][Full Text] [Related]
38. A low-noise demultiplexing system for active multichannel microelectrode arrays. Ji J; Najafi K; Wise KD IEEE Trans Biomed Eng; 1991 Jan; 38(1):75-81. PubMed ID: 2026435 [TBL] [Abstract][Full Text] [Related]
39. Optimization of microelectrode design for cortical recording based on thermal noise considerations. Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023 [TBL] [Abstract][Full Text] [Related]
40. Negative DEP traps for single cell immobilisation. Thomas RS; Morgan H; Green NG Lab Chip; 2009 Jun; 9(11):1534-40. PubMed ID: 19458859 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]