These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11499915)

  • 1. Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor.
    Mars AE; Gorissen JP; van den Beld I; Eggink G
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):101-7. PubMed ID: 11499915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.
    Willrodt C; Halan B; Karthaus L; Rehdorf J; Julsing MK; Buehler K; Schmid A
    Biotechnol Bioeng; 2017 Feb; 114(2):281-290. PubMed ID: 27530691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL.
    Cornelissen S; Julsing MK; Volmer J; Riechert O; Schmid A; Bühler B
    Biotechnol Bioeng; 2013 May; 110(5):1282-92. PubMed ID: 23239244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate.
    Eaton RW
    J Bacteriol; 1997 May; 179(10):3171-80. PubMed ID: 9150211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of limonene by Pseudomonas putida.
    Chatterjee T; Bhattacharyya DK
    Appl Microbiol Biotechnol; 2001 May; 55(5):541-6. PubMed ID: 11414318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica.
    Ferrara MA; Almeida DS; Siani AC; Lucchetti L; Lacerda PS; Freitas A; Tappin MR; Bon EP
    Braz J Microbiol; 2013 Dec; 44(4):1075-80. PubMed ID: 24688495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient hydroxylation of 1,8-cineole with monoterpenoid-resistant recombinant Pseudomonas putida GS1.
    Mi J; Schewe H; Buchhaupt M; Holtmann D; Schrader J
    World J Microbiol Biotechnol; 2016 Jul; 32(7):112. PubMed ID: 27263007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of alpha-terpineol by Pseudomonas incognita.
    Madyastha KM; Renganathan V
    Can J Microbiol; 1984 Dec; 30(12):1429-36. PubMed ID: 6525582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida.
    van Beilen JB; Holtackers R; Lüscher D; Bauer U; Witholt B; Duetz WA
    Appl Environ Microbiol; 2005 Apr; 71(4):1737-44. PubMed ID: 15811996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of protein prenylation by metabolites of limonene.
    Hardcastle IR; Rowlands MG; Barber AM; Grimshaw RM; Mohan MK; Nutley BP; Jarman M
    Biochem Pharmacol; 1999 Apr; 57(7):801-9. PubMed ID: 10075086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid control of the Pseudomonas aeruginosa and Pseudomonas putida phenotypes and of linalool and p-cymene oxidation.
    de Smet MJ; Friedman MB; Gunsalus IC
    J Bacteriol; 1989 Sep; 171(9):5155-61. PubMed ID: 2504698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell physiology rather than enzyme kinetics can determine the efficiency of cytochrome P450-catalyzed C-H-oxyfunctionalization.
    Cornelissen S; Liu S; Deshmukh AT; Schmid A; Bühler B
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1359-70. PubMed ID: 21559976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of alpha-terpineol from Escherichia coli cells expressing thermostable limonene hydratase.
    Savithiry N; Cheong TK; Oriel P
    Appl Biochem Biotechnol; 1997; 63-65():213-20. PubMed ID: 9170246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xanthobacter sp. C20 contains a novel bioconversion pathway for limonene.
    van der Werf MJ; Keijzer PM; van der Schaft PH
    J Biotechnol; 2001 Nov; 84(2):133-43. PubMed ID: 11090685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetics of perillic acid in humans after a single dose administration of a citrus preparation rich in d-limonene content.
    Chow HH; Salazar D; Hakim IA
    Cancer Epidemiol Biomarkers Prev; 2002 Nov; 11(11):1472-6. PubMed ID: 12433729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol.
    Gelb MH; Tamanoi F; Yokoyama K; Ghomashchi F; Esson K; Gould MN
    Cancer Lett; 1995 May; 91(2):169-75. PubMed ID: 7767906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production.
    Yang J; Son JH; Kim H; Cho S; Na JG; Yeon YJ; Lee J
    Microb Cell Fact; 2019 Oct; 18(1):168. PubMed ID: 31601210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth.
    Crowell PL; Lin S; Vedejs E; Gould MN
    Cancer Chemother Pharmacol; 1992; 31(3):205-12. PubMed ID: 1464157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of naturally occurring monoterpenes carvone, limonene and perillic acid in the inhibition of experimental lung metastasis induced by B16F-10 melanoma cells.
    Raphael TJ; Kuttan G
    J Exp Clin Cancer Res; 2003 Sep; 22(3):419-24. PubMed ID: 14582701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.