These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 11499918)
41. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935 [TBL] [Abstract][Full Text] [Related]
42. Experimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR. Sievert C; Nieves LM; Panyon LA; Loeffler T; Morris C; Cartwright RA; Wang X Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7349-7354. PubMed ID: 28655843 [TBL] [Abstract][Full Text] [Related]
43. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Jojima T; Omumasaba CA; Inui M; Yukawa H Appl Microbiol Biotechnol; 2010 Jan; 85(3):471-80. PubMed ID: 19838697 [TBL] [Abstract][Full Text] [Related]
44. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma. Montanti J; Nghiem NP; Johnston DB Appl Biochem Biotechnol; 2011 Jul; 164(5):655-65. PubMed ID: 21274657 [TBL] [Abstract][Full Text] [Related]
45. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Liu R; Liang L; Li F; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P Bioresour Technol; 2013 Dec; 149():84-91. PubMed ID: 24096277 [TBL] [Abstract][Full Text] [Related]
46. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
47. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Escalante A; Salinas Cervantes A; Gosset G; Bolívar F Appl Microbiol Biotechnol; 2012 Jun; 94(6):1483-94. PubMed ID: 22573269 [TBL] [Abstract][Full Text] [Related]
48. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Yomano LP; York SW; Ingram LO J Ind Microbiol Biotechnol; 1998 Feb; 20(2):132-8. PubMed ID: 9611822 [TBL] [Abstract][Full Text] [Related]
49. Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Andersson C; Hodge D; Berglund KA; Rova U Biotechnol Prog; 2007; 23(2):381-8. PubMed ID: 17253726 [TBL] [Abstract][Full Text] [Related]
50. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Hanly TJ; Henson MA Biotechnol Bioeng; 2011 Feb; 108(2):376-85. PubMed ID: 20882517 [TBL] [Abstract][Full Text] [Related]
52. Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. Noguchi T; Tashiro Y; Yoshida T; Zheng J; Sakai K; Sonomoto K J Biosci Bioeng; 2013 Dec; 116(6):716-21. PubMed ID: 23809630 [TBL] [Abstract][Full Text] [Related]
53. Improved ethanol productivity from lignocellulosic hydrolysates by Escherichia coli with regulated glucose utilization. Sun J; Tian K; Wang J; Dong Z; Liu X; Permaul K; Singh S; Prior BA; Wang Z Microb Cell Fact; 2018 May; 17(1):66. PubMed ID: 29720171 [TBL] [Abstract][Full Text] [Related]
54. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Trinh CT; Unrean P; Srienc F Appl Environ Microbiol; 2008 Jun; 74(12):3634-43. PubMed ID: 18424547 [TBL] [Abstract][Full Text] [Related]
55. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Zaldivar J; Nielsen J; Olsson L Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):17-34. PubMed ID: 11499926 [TBL] [Abstract][Full Text] [Related]
56. A new carbon catabolite repression mutation of Escherichia coli, mlc∗, and its use for producing isobutanol. Nakashima N; Tamura T J Biosci Bioeng; 2012 Jul; 114(1):38-44. PubMed ID: 22561880 [TBL] [Abstract][Full Text] [Related]
57. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Ren C; Chen T; Zhang J; Liang L; Lin Z Microb Cell Fact; 2009 Dec; 8():66. PubMed ID: 20003468 [TBL] [Abstract][Full Text] [Related]
58. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli. Liu L; Chen S; Wu J J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1385-1395. PubMed ID: 28726163 [TBL] [Abstract][Full Text] [Related]
59. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
60. The transport and mediation mechanisms of the common sugars in Escherichia coli. Luo Y; Zhang T; Wu H Biotechnol Adv; 2014; 32(5):905-19. PubMed ID: 24780155 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]