These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 11500095)
1. The Cry toxins and the putative hemolysins of Clostridium bifermentans ser. malaysia are not involved in mosquitocidal activity. Juárez-Pérez V; Delécluse A J Invertebr Pathol; 2001 Jul; 78(1):57-8. PubMed ID: 11500095 [No Abstract] [Full Text] [Related]
2. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. de Barros Moreira Beltrão H; Silva-Filha MH FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151 [TBL] [Abstract][Full Text] [Related]
3. The cry toxin operon of Clostridium bifermentans subsp. malaysia is highly toxic to Aedes Larval Mosquitoes. Qureshi N; Chawla S; Likitvivatanavong S; Lee HL; Gill SS Appl Environ Microbiol; 2014 Sep; 80(18):5689-97. PubMed ID: 25002432 [TBL] [Abstract][Full Text] [Related]
4. Clostridium bifermentans serovar malaysia: characterization of putative mosquito larvicidal proteins. Nicolas L; Charles JF; de Barjac H FEMS Microbiol Lett; 1993 Oct; 113(1):23-8. PubMed ID: 8243978 [TBL] [Abstract][Full Text] [Related]
5. Absence of plasmid in mosquitocidal Clostridium bifermentans serovar malaysia. Seleena P; Lee HL Southeast Asian J Trop Med Public Health; 1994 Jun; 25(2):394-6. PubMed ID: 7855665 [No Abstract] [Full Text] [Related]
6. [Transgenic bioinsecticides inimical to parasites, but imical to environment]. Kucińska J; Lonc E; Rydzanicz K Wiad Parazytol; 2003; 49(1):11-20. PubMed ID: 16889013 [TBL] [Abstract][Full Text] [Related]
7. Management of the pest resistance to Bt plants synthesizing two Cry toxins. Gryspeirt A; Gregoire JC Commun Agric Appl Biol Sci; 2007; 72(3):443-4. PubMed ID: 18399472 [No Abstract] [Full Text] [Related]
8. Detection of chromosomally located and plasmid-borne genes on 20 kb DNA fragments in parasporal crystals from Bacillus thuringiensis. Sun Y; Wei W; Ding X; Xia L; Yuan Z Arch Microbiol; 2007 Oct; 188(4):327-32. PubMed ID: 17516045 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of Cry19Aa mosquitocidal activity against Aedes aegypti by mutations in the putative loop regions of domain II. Abdullah MA; Dean DH Appl Environ Microbiol; 2004 Jun; 70(6):3769-71. PubMed ID: 15184189 [TBL] [Abstract][Full Text] [Related]
10. Plant science. The power of the pyramid. Moar WJ; Anilkumar KJ Science; 2007 Dec; 318(5856):1561-2. PubMed ID: 17975032 [No Abstract] [Full Text] [Related]
11. Resistance is non-futile: resistance to Cry5B in the nematode Caenorhabditis elegans. Barrows BD; Griffitts JS; Aroian RV J Invertebr Pathol; 2007 Jul; 95(3):198-200. PubMed ID: 17482642 [TBL] [Abstract][Full Text] [Related]
12. Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review. Clark BW; Phillips TA; Coats JR J Agric Food Chem; 2005 Jun; 53(12):4643-53. PubMed ID: 15941295 [TBL] [Abstract][Full Text] [Related]
13. Flexibility and strictness in functional replacement of domain III of cry insecticidal proteins from Bacillus thuringiensis. Sakai H; Howlader MT; Ishida Y; Nakaguchi A; Oka K; Ohbayashi K; Yamagiwa M; Hayakawa T J Biosci Bioeng; 2007 Apr; 103(4):381-3. PubMed ID: 17502282 [TBL] [Abstract][Full Text] [Related]
14. The uptake machinery of clostridial actin ADP-ribosylating toxins--a cell delivery system for fusion proteins and polypeptide drugs. Barth H; Blöcker D; Aktories K Naunyn Schmiedebergs Arch Pharmacol; 2002 Dec; 366(6):501-12. PubMed ID: 12444490 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial activity of different proteins and their fragments from Bacillus thuringiensis parasporal crystals against clostridia and archaea. Yudina TG; Brioukhanov AL; Zalunin IA; Revina LP; Shestakov AI; Voyushina NE; Chestukhina GG; Netrusov AI Anaerobe; 2007 Feb; 13(1):6-13. PubMed ID: 17126041 [TBL] [Abstract][Full Text] [Related]
16. Amino acid substitutions in alphaA and alphaC of Cyt2Aa2 alter hemolytic activity and mosquito-larvicidal specificity. Promdonkoy B; Rungrod A; Promdonkoy P; Pathaichindachote W; Krittanai C; Panyim S J Biotechnol; 2008 Feb; 133(3):287-93. PubMed ID: 18054404 [TBL] [Abstract][Full Text] [Related]
17. Mode of action of mosquitocidal Bacillus thuringiensis toxins. Soberón M; Fernández LE; Pérez C; Gill SS; Bravo A Toxicon; 2007 Apr; 49(5):597-600. PubMed ID: 17145072 [TBL] [Abstract][Full Text] [Related]
18. Activity of Bacillus thuringiensis toxins against cocoa pod borer larvae. Santoso D; Chaidamsari T; Wiryadiputra S; de Maagd RA Pest Manag Sci; 2004 Aug; 60(8):735-8. PubMed ID: 15307664 [TBL] [Abstract][Full Text] [Related]
19. Changes in susceptibility to conventional insecticides of a Cry1Ac-selected population of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Wu K; Guo Y Pest Manag Sci; 2004 Jul; 60(7):680-4. PubMed ID: 15260299 [TBL] [Abstract][Full Text] [Related]
20. [Identification of cry-type genes of 31 Bacillus thuringiensis isolates and analysis of their expression product]. Zhang J; Song F; Zuo Y; Dai L; Huang D Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):372-8. PubMed ID: 12548957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]