These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11500128)

  • 1. Use of pruned computational neural networks for processing the response of oscillating chemical reactions with a view to analyzing nonlinear multicomponent mixtures.
    Hervás C; Toledo R; Silva M
    J Chem Inf Comput Sci; 2001; 41(4):1083-92. PubMed ID: 11500128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heuristic extraction of rules in pruned artificial neural networks models used for quantifying highly overlapping chromatographic peaks.
    Hervás C; Silva M; Serrano JM; Orejuela E
    J Chem Inf Comput Sci; 2004; 44(5):1576-84. PubMed ID: 15446815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction of temperature variations in kinetic-based determinations by use of pruning computational neural networks in conjunction with genetic algorithms.
    Hervás C; Algar JA; Silva M
    J Chem Inf Comput Sci; 2000; 40(3):724-31. PubMed ID: 10850776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicomponent kinetic determinations using artificial neural networks.
    Ventura S; Silva M; Pérez-Bendito D; Hervás C
    Anal Chem; 1995 Dec; 67(24):4458-61. PubMed ID: 8633783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the quantification of highly overlapping chromatographic peaks by using product unit neural networks modeled by an evolutionary algorithm.
    Hervás C; Martínez AC; Silva M; Serrano JM
    J Chem Inf Model; 2005; 45(4):894-903. PubMed ID: 16045283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pruning artificial neural networks using neural complexity measures.
    Jorgensen TD; Haynes BP; Norlund CC
    Int J Neural Syst; 2008 Oct; 18(5):389-403. PubMed ID: 18991362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of glutamic acid by an oscillating chemical reaction using the analyte pulse perturbation technique.
    Gao J; Yang H; Liu X; Ren J; Li Q; Kang J
    Talanta; 2002 Apr; 57(1):105-14. PubMed ID: 18968610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical assessment of the oscillating chemical reactions by use chemiluminescence detection.
    Jiménez-Prieto R; Silva M; Pérez-Bendito D
    Talanta; 1997 Aug; 44(8):1463-72. PubMed ID: 18966884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for determination of uric acid by the lactic acid-acetone-BrO(3)(-)-Mn(2+)-H(2)SO(4) oscillating reaction using the analyte pulse perturbation technique.
    Wang J; Yang S; Cai R; Lin Z; Liu Z
    Talanta; 2005 Feb; 65(3):799-805. PubMed ID: 18969871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.
    Zou AM; Dev Kumar K; Hou ZG
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1457-71. PubMed ID: 20729168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shallowing Deep Networks: Layer-Wise Pruning Based on Feature Representations.
    Chen S; Zhao Q
    IEEE Trans Pattern Anal Mach Intell; 2019 Dec; 41(12):3048-3056. PubMed ID: 30296213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of Nonlinear Models of Oscillatory Systems by Applying an Intelligent Computational Technique.
    Khan NA; Alshammari FS; Romero CAT; Sulaiman M
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.
    Chedjou JC; Kyamakya K
    IEEE Trans Neural Netw Learn Syst; 2015 Apr; 26(4):749-62. PubMed ID: 25794380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.
    Eun H; Kim D; Jung C; Kim C
    Comput Methods Programs Biomed; 2018 Oct; 165():215-224. PubMed ID: 30337076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear equalization based on pruned artificial neural networks for 112-Gb/s SSB-PAM4 transmission over 80-km SSMF.
    Wan Z; Li J; Shu L; Luo M; Li X; Fu S; Xu K
    Opt Express; 2018 Apr; 26(8):10631-10642. PubMed ID: 29715996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ELITE: ensemble of optimal input-pruned neural networks using TRUST-TECH.
    Wang B; Chiang HD
    IEEE Trans Neural Netw; 2011 Jan; 22(1):96-109. PubMed ID: 21075722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of quantitative structure-activity relationship and classification models for a set of carbonic anhydrase inhibitors.
    Mattioni BE; Jurs PC
    J Chem Inf Comput Sci; 2002; 42(1):94-102. PubMed ID: 11855972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.