BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11500207)

  • 1. Decolorization of textile indigo dye by ligninolytic fungi.
    Balan DS; Monteiro RT
    J Biotechnol; 2001 Aug; 89(2-3):141-5. PubMed ID: 11500207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous hydrogen production and decolorization of denim textile wastewater: kinetics of decolorizing of indigo dye by bacterial and fungal strains.
    Valdez-Vazquez I; Robledo-Rizo JG; Muñoz-Páez KM; Pérez-Rangel M; de la Luz Ruiz-Aguilar GM
    Braz J Microbiol; 2020 Jun; 51(2):701-709. PubMed ID: 32319044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.
    Sani RK; Azmi W; Banerjee UC
    Folia Microbiol (Praha); 1998; 43(1):85-8. PubMed ID: 9616055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Stereum hirsutum (Wild) Pers. action in dye degradation].
    Mouso N; Diorio L; Forchiassin F
    Rev Iberoam Micol; 2007 Dec; 24(4):294-8. PubMed ID: 18095763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing Basidiomycetes strains.
    Moreira-Neto SL; Mussatto SI; Machado KM; Milagres AM
    Lett Appl Microbiol; 2013 Apr; 56(4):283-90. PubMed ID: 23350659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium.
    Spadaro JT; Gold MH; Renganathan V
    Appl Environ Microbiol; 1992 Aug; 58(8):2397-401. PubMed ID: 1514787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-mediated decolorization of synthetic dyes by fungal laccases.
    Claus H; Faber G; König H
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):672-8. PubMed ID: 12226723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced textile dye decolorization by marine-derived basidiomycete Peniophora sp. CBMAI 1063 using integrated statistical design.
    Bonugli-Santos RC; Vieira GA; Collins C; Fernandes TC; Marin-Morales MA; Murray P; Sette LD
    Environ Sci Pollut Res Int; 2016 May; 23(9):8659-68. PubMed ID: 26797957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and phanerochaete chrysosporium under solid-state fermentation.
    Verma P; Madamwar D
    Appl Biochem Biotechnol; 2002; 102-103(1-6):109-18. PubMed ID: 12396115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review.
    Kumar V; Pallavi P; Sen SK; Raut S
    Water Environ Res; 2024 Jan; 96(1):e10959. PubMed ID: 38204323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of filamentous fungi for the decolorization of a commercial reactive dye.
    dos Santos AZ; Cândido Neto JM; Tavares CR; da Costa SM
    J Basic Microbiol; 2004; 44(4):288-95. PubMed ID: 15266601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanerochaete sordida and inhibitory effect of polyvinyl alcohol.
    Harazono K; Nakamura K
    Chemosphere; 2005 Mar; 59(1):63-8. PubMed ID: 15698645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of dyes decolourisation by the crude enzyme from Pleurotus sajor-caju grown on sorghum seed media.
    Sarnthima R; Khammuang S
    Pak J Biol Sci; 2008 Jan; 11(1):62-7. PubMed ID: 18819594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring fungal-mediated solutions and its molecular mechanistic insights for textile dye decolorization.
    Kalia S; Samuchiwal S; Dalvi V; Malik A
    Chemosphere; 2024 Jul; 360():142370. PubMed ID: 38763399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor.
    Sedighi M; Karimi A; Vahabzadeh F
    J Hazard Mater; 2009 Sep; 169(1-3):88-93. PubMed ID: 19395172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium.
    Martins MA; Ferreira IC; Santos IM; Queiroz MJ; Lima N
    J Biotechnol; 2001 Aug; 89(2-3):91-8. PubMed ID: 11500201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions.
    Libra JA; Borchert M; Banit S
    Biotechnol Bioeng; 2003 Jun; 82(6):736-44. PubMed ID: 12673774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfophthalimide as major metabolite formed from sulfonated phthalocyanine dyes by the white-rot fungus Bjerkandera adusta.
    Heinfling-Weidtmann A; Reemtsma T; Storm T; Szewzyk U
    FEMS Microbiol Lett; 2001 Sep; 203(2):179-83. PubMed ID: 11583845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White-rot fungi capable of decolourising textile dyes under alkaline conditions.
    Ottoni CA; Santos C; Kozakiewicz Z; Lima N
    Folia Microbiol (Praha); 2013 May; 58(3):187-93. PubMed ID: 23008155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.