BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 11500546)

  • 1. Modification of expansin transcript levels in the maize primary root at low water potentials.
    Wu Y; Thorne ET; Sharp RE; Cosgrove DJ
    Plant Physiol; 2001 Aug; 126(4):1471-9. PubMed ID: 11500546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins.
    Wu Y; Sharp RE; Durachko DM; Cosgrove DJ
    Plant Physiol; 1996 Jul; 111(3):765-72. PubMed ID: 11536740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation.
    Ober ES; Sharp RE
    J Exp Bot; 2003 Feb; 54(383):813-24. PubMed ID: 12554724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize.
    Wu Y; Meeley RB; Cosgrove DJ
    Plant Physiol; 2001 May; 126(1):222-32. PubMed ID: 11351085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production.
    Spollen WG; LeNoble ME; Samuels TD; Bernstein N; Sharp RE
    Plant Physiol; 2000 Mar; 122(3):967-76. PubMed ID: 10712561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat.
    Zhao MR; Han YY; Feng YN; Li F; Wang W
    Plant Cell Rep; 2012 Apr; 31(4):671-85. PubMed ID: 22076248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential responses of maize MIP genes to salt stress and ABA.
    Zhu C; Schraut D; Hartung W; Schäffner AR
    J Exp Bot; 2005 Nov; 56(421):2971-81. PubMed ID: 16216844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast changes in expression of expansin gene and leaf extensibility in osmotically stressed maize plants.
    Sabirzhanova IB; Sabirzhanov BE; Chemeris AV; Veselov DS; Kudoyarova GR
    Plant Physiol Biochem; 2005 Apr; 43(4):419-22. PubMed ID: 15907695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inhibition of abscisic Acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials.
    Saab IN; Sharp RE; Pritchard J
    Plant Physiol; 1992 May; 99(1):26-33. PubMed ID: 16668859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proline Accumulation in Maize (Zea mays L.) Primary Roots at Low Water Potentials (I. Requirement for Increased Levels of Abscisic Acid).
    Ober ES; Sharp RE
    Plant Physiol; 1994 Jul; 105(3):981-987. PubMed ID: 12232259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations.
    Jia W; Zhang J; Liang J
    J Exp Bot; 2001 Feb; 52(355):295-300. PubMed ID: 11283174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.).
    Geilfus CM; Zörb C; Mühling KH
    Plant Physiol Biochem; 2010 Dec; 48(12):993-8. PubMed ID: 20970350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of alpha-expansin genes during root acclimations to O2 deficiency in Rumex palustris.
    Colmer TD; Peeters AJ; Wagemaker CA; Vriezen WH; Ammerlaan A; Voesenek LA
    Plant Mol Biol; 2004 Oct; 56(3):423-37. PubMed ID: 15604754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root Growth Maintenance at Low Water Potentials (Increased Activity of Xyloglucan Endotransglycosylase and Its Possible Regulation by Abscisic Acid).
    Wu Y; Spollen WG; Sharp RE; Hetherington PR; Fry SC
    Plant Physiol; 1994 Oct; 106(2):607-615. PubMed ID: 12232354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression profiles of growth-related genes in the elongation zone of maize primary roots.
    Bassani M; Neumann PM; Gepstein S
    Plant Mol Biol; 2004 Oct; 56(3):367-80. PubMed ID: 15604750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins.
    Ruiz-Lozano JM; del Mar Alguacil M; Bárzana G; Vernieri P; Aroca R
    Plant Mol Biol; 2009 Jul; 70(5):565-79. PubMed ID: 19404751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translatable RNA Populations Associated with Maintenance of Primary Root Elongation and Inhibition of Mesocotyl Elongation by Abscisic Acid in Maize Seedlings at Low Water Potentials.
    Saab IN; Ho T; Sharp RE
    Plant Physiol; 1995 Oct; 109(2):593-601. PubMed ID: 12228616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-deficit-induced changes in transcription factor expression in maize seedlings.
    Seeve CM; Cho IJ; Hearne LB; Srivastava GP; Joshi T; Smith DO; Sharp RE; Oliver MJ
    Plant Cell Environ; 2017 May; 40(5):686-701. PubMed ID: 28039925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of alpha-expansin and expansin-like genes in deepwater rice.
    Lee Y; Kende H
    Plant Physiol; 2002 Nov; 130(3):1396-405. PubMed ID: 12428004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential.
    Spollen WG; Tao W; Valliyodan B; Chen K; Hejlek LG; Kim JJ; Lenoble ME; Zhu J; Bohnert HJ; Henderson D; Schachtman DP; Davis GE; Springer GK; Sharp RE; Nguyen HT
    BMC Plant Biol; 2008 Apr; 8():32. PubMed ID: 18387193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.