These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11500566)

  • 1. Electrodiffusional uptake of organic cations by pea seed coats. Further evidence for poorly selective pores in the plasma membrane of seed coat parenchyma cells.
    van Dongen JT; Laan RG; Wouterlood M; Borstlap AC
    Plant Physiol; 2001 Aug; 126(4):1688-97. PubMed ID: 11500566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients.
    Van Dongen JT; Ammerlaan AM; Wouterlood M; Van Aelst AC; Borstlap AC
    Ann Bot; 2003 May; 91(6):729-37. PubMed ID: 12714370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Mechanism of Amino Acid Efflux from Seed Coats of Developing Pea Seeds as Revealed by Uptake Experiments.
    De Jong A; Koerselman-Kooij JW; Schuurmans J; Borstlap AC
    Plant Physiol; 1997 Jun; 114(2):731-736. PubMed ID: 12223741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.
    Niemann S; Burghardt M; Popp C; Riederer M
    Plant Cell Environ; 2013 May; 36(5):1027-36. PubMed ID: 23146121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A plasma membrane-enriched fraction isolated from the coats of developing pea seeds contains H(+)-symporters for amino acids and sucrose.
    de Jong A; Borstlap AC
    J Exp Bot; 2000 Oct; 51(351):1671-7. PubMed ID: 11053456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons.
    Rosche E; Blackmore D; Tegeder M; Richardson T; Schroeder H; Higgins TJ; Frommer WB; Offler CE; Patrick JW
    Plant J; 2002 Apr; 30(2):165-75. PubMed ID: 12000453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar retrieval by coats of developing seeds of Phaseolus vulgaris L. and Vicia faba L.
    Ritchie RJ; Fieuw-Makaroff S; Patrick JW
    Plant Cell Physiol; 2003 Feb; 44(2):163-72. PubMed ID: 12610219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonselective currents and channels in plasma membranes of protoplasts from coats of developing seeds of bean.
    Zhang WH; Skerrett M; Walker NA; Patrick JW; Tyerman SD
    Plant Physiol; 2002 Feb; 128(2):388-99. PubMed ID: 11842143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of amino acids (L-valine, L-lysine, L-glutamic acid) and sucrose into plasma membrane vesicles isolated from cotyledons of developing pea seeds.
    de Jong A; Borstlap AC
    J Exp Bot; 2000 Oct; 51(351):1663-70. PubMed ID: 11053455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sucrose transport into developing seeds of Pisum sativum L.
    Tegeder M; Wang XD; Frommer WB; Offler CE; Patrick JW
    Plant J; 1999 Apr; 18(2):151-61. PubMed ID: 10363367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-chiro-inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum.
    Lahuta LB; Dzik T
    J Plant Physiol; 2011 Mar; 168(4):352-8. PubMed ID: 20947202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators.
    Zhou Y; Qu H; Dibley KE; Offler CE; Patrick JW
    Plant J; 2007 Feb; 49(4):750-64. PubMed ID: 17253986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds.
    Borisjuk L; Rolletschek H; Wobus U; Weber H
    J Exp Bot; 2003 Jan; 54(382):503-12. PubMed ID: 12508061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 2-oxoglutarate/malate translocator mediates amino acid and storage protein biosynthesis in pea embryos.
    Riebeseel E; Häusler RE; Radchuk R; Meitzel T; Hajirezaei MR; Emery RJ; Küster H; Nunes-Nesi A; Fernie AR; Weschke W; Weber H
    Plant J; 2010 Jan; 61(2):350-63. PubMed ID: 19845879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds.
    Nadeau CD; Ozga JA; Kurepin LV; Jin A; Pharis RP; Reinecke DM
    Plant Physiol; 2011 Jun; 156(2):897-912. PubMed ID: 21482633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, characterization and physiological role of sucrose synthase in the pea seed coat (Pisum sativum L.).
    Déjardin A; Rochat C; Maugenest S; Boutin JP
    Planta; 1997; 201(2):128-37. PubMed ID: 9084215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoenolpyruvate carboxykinase in developing pea seeds is associated with tissues involved in solute transport and is nitrogen-responsive.
    Delgado-Alvarado A; Walker RP; Leegood RC
    Plant Cell Environ; 2007 Feb; 30(2):225-35. PubMed ID: 17238913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions.
    Ramos H; Valdivieso E; Gamargo M; Dagger F; Cohen BE
    J Membr Biol; 1996 Jul; 152(1):65-75. PubMed ID: 8660406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.
    Zhang L; Garneau MG; Majumdar R; Grant J; Tegeder M
    Plant J; 2015 Jan; 81(1):134-46. PubMed ID: 25353986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.