BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 11500976)

  • 1. Endogenous electric current is associated with normal development of the vertebrate limb.
    Altizer AM; Moriarty LJ; Bell SM; Schreiner CM; Scott WJ; Borgens RB
    Dev Dyn; 2001 Aug; 221(4):391-401. PubMed ID: 11500976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A steady efflux of ionic current predicts hind limb development in the axolotl.
    Borgens RB; Rouleau MF; DeLanney LE
    J Exp Zool; 1983 Dec; 228(3):491-503. PubMed ID: 6663262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption.
    Hotary KB; Robinson KR
    Dev Biol; 1994 Dec; 166(2):789-800. PubMed ID: 7813796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression patterns of Fgf-8 during development and limb regeneration of the axolotl.
    Han MJ; An JY; Kim WS
    Dev Dyn; 2001 Jan; 220(1):40-8. PubMed ID: 11146506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue patterning in the developing mouse limb.
    Martin P
    Int J Dev Biol; 1990 Sep; 34(3):323-36. PubMed ID: 1702679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRC-5 cells induce the AER prior to the duplicated pattern formation in chick limb bud.
    Yonei S; Tamura K; Ohsugi K; Ide H
    Dev Biol; 1995 Aug; 170(2):542-52. PubMed ID: 7649382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid changes the proximodistal developmental competence and affinity of distal cells in the developing chick limb bud.
    Tamura K; Yokouchi Y; Kuroiwa A; Ide H
    Dev Biol; 1997 Aug; 188(2):224-34. PubMed ID: 9268571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of the vertebrate limb.
    Amprino R
    Clin Orthop Relat Res; 1984 Sep; (188):263-84. PubMed ID: 6380864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy of axolotl flank integument during limb bud development with special reference to a transcutaneous current predicting limb formation.
    Borgens RB; Callahan L; Rouleau MF
    J Exp Zool; 1987 Nov; 244(2):203-14. PubMed ID: 3430119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wnt10a is involved in AER formation during chick limb development.
    Narita T; Sasaoka S; Udagawa K; Ohyama T; Wada N; Nishimatsu S; Takada S; Nohno T
    Dev Dyn; 2005 Jun; 233(2):282-7. PubMed ID: 15789446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential response of Shh expression between chick forelimb and hindlimb buds by FGF-4.
    Wada N; Nohno T
    Dev Dyn; 2001 Aug; 221(4):402-11. PubMed ID: 11500977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stages of flank ectoderm capable of responding to ridge induction in the chick embryo.
    Carrington JL; Fallon JF
    J Embryol Exp Morphol; 1984 Dec; 84():19-34. PubMed ID: 6533249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of insulin-like growth factor-I (IGF-I) and IGF-I binding protein-2 (IGFBP2) and -5 (IGFBP5) in developing chick limbs.
    McQueeney K; Dealy CN
    Growth Horm IGF Res; 2001 Dec; 11(6):346-63. PubMed ID: 11914022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow and fast muscle fibers are preferentially derived from myoblasts migrating into the chick limb bud at different developmental times.
    Van Swearingen J; Lance-Jones C
    Dev Biol; 1995 Aug; 170(2):321-37. PubMed ID: 7649366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous status of retinoids and their cytosolic binding proteins in limb buds of chick vs mouse embryos.
    Scott WJ; Walter R; Tzimas G; Sass JO; Nau H; Collins MD
    Dev Biol; 1994 Oct; 165(2):397-409. PubMed ID: 7958408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid respecifies limb bud cells in vitro.
    Hayamizu TF; Bryant SV
    J Exp Zool; 1992 Oct; 263(4):423-9. PubMed ID: 1402740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRC-5, human embryonic lung fibroblasts, induce the duplication of the developing chick limb bud.
    Yonei S; Tamura K; Koyama E; Nohno T; Noji S; Ide H
    Dev Biol; 1993 Nov; 160(1):246-53. PubMed ID: 8224541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative analysis of Meox1 and Meox2 in the developing somites and limbs of the chick embryo.
    Reijntjes S; Stricker S; Mankoo BS
    Int J Dev Biol; 2007; 51(8):753-9. PubMed ID: 17939123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limb bud and flank mesoderm have distinct "physical phenotypes" that may contribute to limb budding.
    Damon BJ; Mezentseva NV; Kumaratilake JS; Forgacs G; Newman SA
    Dev Biol; 2008 Sep; 321(2):319-30. PubMed ID: 18601915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of wing-bud-derived muscles in normal and wingless chick embryos: a computer-assisted three-dimensional reconstruction study of muscle pattern formation in the absence of skeletal elements.
    Lanser ME; Fallon JF
    Anat Rec; 1987 Jan; 217(1):61-78. PubMed ID: 3454566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.