BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 11501007)

  • 21. The influence of limb alignment on the gait of above-knee amputees.
    Yang L; Solomonidis SE; Spence WD; Paul JP
    J Biomech; 1991; 24(11):981-97. PubMed ID: 1761584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of coronal and sagittal prosthetic foot alignment on socket reaction moments in transtibial prostheses during walking.
    Hashimoto H; Kobayashi T; Kataoka M; Okuda K
    Gait Posture; 2021 Oct; 90():252-260. PubMed ID: 34534864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gait Characteristics of Transtibial Amputees on Level Ground in a Cohort of 53 Amputees - Comparison of Kinetics and Kinematics With Non-amputees.
    Pröbsting E; Bellmann M; Schmalz T; Hahn A
    Can Prosthet Orthot J; 2019; 2(2):32955. PubMed ID: 37614767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of EMG parameter for transtibial prosthetic user with flexion and extension of the knee and normal walking gait: A preliminary study.
    Sobh KNM; Abd Razak NA; Abu Osman NA
    Proc Inst Mech Eng H; 2021 Apr; 235(4):419-427. PubMed ID: 33517847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait.
    van der Linden ML; Solomonidis SE; Spence WD; Li N; Paul JP
    J Biomech; 1999 Sep; 32(9):877-89. PubMed ID: 10460124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees.
    Kobayashi T; Orendurff MS; Arabian AK; Rosenbaum-Chou TG; Boone DA
    J Biomech; 2014 Apr; 47(6):1315-23. PubMed ID: 24612718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?
    D'Andrea S; Wilhelm N; Silverman AK; Grabowski AM
    Clin Orthop Relat Res; 2014 Oct; 472(10):3044-54. PubMed ID: 24781926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of prosthetic ankle mobility in the sagittal plane on the gait of transfemoral amputees wearing a stance phase controlled knee prosthesis.
    Lee S; Hong J
    Proc Inst Mech Eng H; 2009 Feb; 223(2):263-71. PubMed ID: 19278201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using a Simple Walking Model to Optimize Transfemoral Prostheses for Prosthetic Limb Stability-A Preliminary Study.
    Pace A; Howard D; Gard SA; Major MJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3005-3012. PubMed ID: 33275584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trans-tibial amputee gait: time-distance parameters and EMG activity.
    Isakov E; Keren O; Benjuya N
    Prosthet Orthot Int; 2000 Dec; 24(3):216-20. PubMed ID: 11195356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of heel lifting on transtibial amputee gait before and after treadmill walking: a case study.
    Yeung LF; Leung AK; Zhang M; Lee WC
    Prosthet Orthot Int; 2013 Aug; 37(4):317-23. PubMed ID: 23124990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role?
    Boutwell E; Stine R; Gard S
    Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees.
    Segal AD; Orendurff MS; Klute GK; McDowell ML; Pecoraro JA; Shofer J; Czerniecki JM
    J Rehabil Res Dev; 2006; 43(7):857-70. PubMed ID: 17436172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uphill and downhill walking in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation.
    Okita Y; Yamasaki N; Nakamura T; Mita T; Kubo T; Mitsumoto A; Akune T
    Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy.
    Rogozinski BM; Davids JR; Davis RB; Jameson GG; Blackhurst DW
    J Bone Joint Surg Am; 2009 Oct; 91(10):2440-7. PubMed ID: 19797580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650375. PubMed ID: 24187194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.