These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11501413)

  • 1. Effect of starvation and chloramphenicol on acceleration of bacterial dihexyl sulfosuccinate biotransformation.
    Chmelárová Z; Závadská I; Húska J; Tóth D
    Folia Microbiol (Praha); 2000; 45(6):493-5. PubMed ID: 11501413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihexyl sulfosuccinate biodegradation by mixed cultures.
    Chmelárová Z; Závadská I; Húska J; Tóth D
    Folia Microbiol (Praha); 2000; 45(6):491-2. PubMed ID: 11501412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment, isolation and characterization of dialkyl sulfosuccinate degrading bacteria Comamonas terrigena N3H and Comamonas terrigena N1C.
    Proksová M; Augustín J; Vrbanová A
    Folia Microbiol (Praha); 1997; 42(6):635-9. PubMed ID: 9508556
    [No Abstract]   [Full Text] [Related]  

  • 4. [Stimulation of rna synthesis by chloramphenicol].
    Shchakupov RC; Kpiachko EV
    Biokhimiia; 1975; 40(2):263-6. PubMed ID: 1106775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli.
    Midgley JE; Gray WJ
    Biochem J; 1971 Apr; 122(2):149-59. PubMed ID: 4940606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lag period of 14CO2 evolution from dioctyl sulpho[2,3-14C]succinate in relation to adaptation of bacterium, Comamonas terrigena, to dialkyl esters of sulphosuccinate.
    Godocíková J; Ferianc P; Polek B
    Biotechnol Lett; 2004 Oct; 26(19):1497-500. PubMed ID: 15604786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkaline phosphatase activity of Escherichia coli starved in sterile lake water microcosms.
    Ozkanca R; Flint KP
    J Appl Bacteriol; 1996 Mar; 80(3):252-8. PubMed ID: 8852672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium.
    Yang C; Li Y; Zhang K; Wang X; Ma C; Tang H; Xu P
    Biodegradation; 2010 Feb; 21(1):97-105. PubMed ID: 19603273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose starvation response in Enterococcus faecalis JH2-2: survival and protein analysis.
    Giard JC; Hartke A; Flahaut S; Boutibonnes P; Auffray Y
    Res Microbiol; 1997 Jan; 148(1):27-35. PubMed ID: 9404502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of a surfactant on the electroactivity of proteins at an aqueous-organogel microinterface array.
    O'Sullivan S; Arrigan DW
    Anal Chem; 2013 Feb; 85(3):1389-94. PubMed ID: 23259491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of chloramphenicol and sulphaphenazole on the biotransformation of cyclophosphamide in man.
    Faber OK; Mouridsen HT; Skovsted L
    Br J Clin Pharmacol; 1975 Jun; 2(3):281-5. PubMed ID: 791322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo protein synthesis during the development of competence in Bacillus subtilis.
    Tichý P
    Folia Microbiol (Praha); 1972; 17(3):213-20. PubMed ID: 4624011
    [No Abstract]   [Full Text] [Related]  

  • 13. Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9.
    Wrangstadh M; Szewzyk U; Ostling J; Kjelleberg S
    Appl Environ Microbiol; 1990 Jul; 56(7):2065-72. PubMed ID: 2202255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene.
    Sartoros C; Yerushalmi L; Béron P; Guiot SR
    Chemosphere; 2005 Nov; 61(7):1042-50. PubMed ID: 16197980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival.
    Groat RG; Schultz JE; Zychlinsky E; Bockman A; Matin A
    J Bacteriol; 1986 Nov; 168(2):486-93. PubMed ID: 3536847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comamonas sp. 3ah48 is a dibenz[a,h]anthracene-degrading bacterium that is tolerant to heavy metals.
    Okai M; Ohki Y; Yamamoto S; Takashio M; Ishida M; Urano N
    Lett Appl Microbiol; 2019 Jun; 68(6):589-596. PubMed ID: 30942912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms.
    Chen HJ; Tseng DH; Huang SL
    Bioresour Technol; 2005 Sep; 96(13):1483-91. PubMed ID: 15939276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Clp protease subunits in degradation of carbon starvation proteins in Escherichia coli.
    Damerau K; St John AC
    J Bacteriol; 1993 Jan; 175(1):53-63. PubMed ID: 8416909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms.
    Chen HJ; Huang SL; Tseng DH
    Environ Technol; 2004 Feb; 25(2):201-10. PubMed ID: 15116878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Modification of cell damage, caused by variable rate heating, by means of changes in osmotic pressure of the medium or using chloramphenicol].
    Morozov II; Petin VG
    Tsitologiia; 1998; 40(2-3):178-84. PubMed ID: 9610483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.