BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11501470)

  • 1. Survival of and wheat-root colonization by alginate encapsulated Herbaspirillum spp.
    el-Komy HM
    Folia Microbiol (Praha); 2001; 46(1):25-30. PubMed ID: 11501470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of Herbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using 15N-dilution method.
    el-Komy HM; Saad OA; Hetta AM
    Folia Microbiol (Praha); 2003; 48(6):787-93. PubMed ID: 15058193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival and proliferation of alginate encapsulated Trichoderma spp. in Egyptian soil in comparison with allyl alcohol soil fumigation.
    Shaban GM; El-Komy HM
    Mycopathologia; 2001; 151(3):139-46. PubMed ID: 11678588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave-like distribution patterns of gfp-marked Pseudomonas fluorescens along roots of wheat plants grown in two soils.
    van Bruggen AH; Semenov AM; Zelenev VV; Semenov AV; Raaijmakers JM; Sayler RJ; de Vos O
    Microb Ecol; 2008 Apr; 55(3):466-75. PubMed ID: 17934689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient-enhanced survival of and phenanthrene mineralization by alginate-encapsulated and free Pseudomonas sp. UG14Lr cells in creosote-contaminated soil slurries.
    Weir SC; Dupuis SP; Providenti MA; Lee H; Trevors JT
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):946-51. PubMed ID: 7576562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism.
    Conn VM; Franco CM
    Appl Environ Microbiol; 2004 Nov; 70(11):6407-13. PubMed ID: 15528499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads.
    Vancov T; Jury K; Rice N; Van Zwieten L; Morris S
    J Appl Microbiol; 2007 Jan; 102(1):212-20. PubMed ID: 17184337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory activity of alginate-encapsulated Pseudomonas fluorescens cells introduced into soil.
    Trevors JT
    Appl Microbiol Biotechnol; 1991 Jun; 35(3):416-9. PubMed ID: 1367541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical alteration of the rhizosphere of the mycorrhizal-colonized wheat root.
    Mohammad MJ; Pan WL; Kennedy AC
    Mycorrhiza; 2005 Jun; 15(4):259-66. PubMed ID: 15503187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere.
    Bezzate S; Aymerich S; Chambert R; Czarnes S; Berge O; Heulin T
    Environ Microbiol; 2000 Jun; 2(3):333-42. PubMed ID: 11200435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of N
    Xu J; Kloepper JW; Huang P; McInroy JA; Hu CH
    J Basic Microbiol; 2018 May; 58(5):459-471. PubMed ID: 29473969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots.
    Pankievicz VC; Camilios-Neto D; Bonato P; Balsanelli E; Tadra-Sfeir MZ; Faoro H; Chubatsu LS; Donatti L; Wajnberg G; Passetti F; Monteiro RA; Pedrosa FO; Souza EM
    Plant Mol Biol; 2016 Apr; 90(6):589-603. PubMed ID: 26801330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea.
    Kim C; Kecskés ML; Deaker RJ; Gilchrist K; New PB; Kennedy IR; Kim S; Sa T
    Can J Microbiol; 2005 Nov; 51(11):948-56. PubMed ID: 16333334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi.
    Fischer SE; Jofré EC; Cordero PV; Gutiérrez Mañero FJ; Mori GB
    Antonie Van Leeuwenhoek; 2010 Mar; 97(3):241-51. PubMed ID: 20020326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96.
    Raaijmakers JM; Weller DM
    Appl Environ Microbiol; 2001 Jun; 67(6):2545-54. PubMed ID: 11375162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nematode-enhanced microbial colonization of the wheat rhizosphere.
    Knox OG; Killham K; Mullins CE; Wilson MJ
    FEMS Microbiol Lett; 2003 Aug; 225(2):227-33. PubMed ID: 12951246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of bacterial inoculant formulated with Paraburkholderia tropica to enhance wheat productivity.
    Bernabeu PR; García SS; López AC; Vio SA; Carrasco N; Boiardi JL; Luna MF
    World J Microbiol Biotechnol; 2018 May; 34(6):81. PubMed ID: 29802598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of temperature and soil moisture content on the colonization of the wheat rhizosphere by antipytopathogenic Bacillus Cohn].
    Melent'ev AI; Kuz'mina LIu; Galimzianova NF
    Mikrobiologiia; 2000; 69(3):426-32. PubMed ID: 10920816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and persistence of phosphate solubilizing Azotobacter chroococcum in wheat rhizosphere.
    Kumar V; Aggarwal NK; Singh BP
    Folia Microbiol (Praha); 2000; 45(4):343-7. PubMed ID: 11347258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.