BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11502169)

  • 1. Yeast mitochondrial dehydrogenases are associated in a supramolecular complex.
    Grandier-Vazeille X; Bathany K; Chaignepain S; Camougrand N; Manon S; Schmitter JM
    Biochemistry; 2001 Aug; 40(33):9758-69. PubMed ID: 11502169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae.
    Påhlman IL; Larsson C; Averét N; Bunoust O; Boubekeur S; Gustafsson L; Rigoulet M
    J Biol Chem; 2002 Aug; 277(31):27991-5. PubMed ID: 12032156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae.
    Bunoust O; Devin A; Avéret N; Camougrand N; Rigoulet M
    J Biol Chem; 2005 Feb; 280(5):3407-13. PubMed ID: 15557339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae.
    Rigoulet M; Aguilaniu H; Avéret N; Bunoust O; Camougrand N; Grandier-Vazeille X; Larsson C; Pahlman IL; Manon S; Gustafsson L
    Mol Cell Biochem; 2004; 256-257(1-2):73-81. PubMed ID: 14977171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization.
    Cabrera-Orefice A; Chiquete-Félix N; Espinasa-Jaramillo J; Rosas-Lemus M; Guerrero-Castillo S; Peña A; Uribe-Carvajal S
    Biochim Biophys Acta; 2014 Jan; 1837(1):73-84. PubMed ID: 23933018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae.
    Matus-Ortega MG; Cárdenas-Monroy CA; Flores-Herrera O; Mendoza-Hernández G; Miranda M; González-Pedrajo B; Vázquez-Meza H; Pardo JP
    Yeast; 2015 Oct; 32(10):629-41. PubMed ID: 26173916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria.
    Overkamp KM; Bakker BM; Kötter P; van Tuijl A; de Vries S; van Dijken JP; Pronk JT
    J Bacteriol; 2000 May; 182(10):2823-30. PubMed ID: 10781551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae.
    Small WC; McAlister-Henn L
    J Bacteriol; 1998 Aug; 180(16):4051-5. PubMed ID: 9696750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast.
    Vélot C; Srere PA
    J Biol Chem; 2000 Apr; 275(17):12926-33. PubMed ID: 10777592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic effects of mislocalized mitochondrial and peroxisomal citrate synthases in yeast Saccharomyces cerevisiae.
    Vélot C; Lebreton S; Morgunov I; Usher KC; Srere PA
    Biochemistry; 1999 Dec; 38(49):16195-204. PubMed ID: 10587442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants.
    Gomes F; Tahara EB; Busso C; Kowaltowski AJ; Barros MH
    Biochem J; 2013 Feb; 449(3):595-603. PubMed ID: 23116202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of yeast citrate synthase with yeast mitochondrial inner membranes.
    Brent LG; Srere PA
    J Biol Chem; 1987 Jan; 262(1):319-25. PubMed ID: 3539936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic channeling of oxaloacetate in a fusion protein of porcine citrate synthase and porcine mitochondrial malate dehydrogenase.
    Shatalin K; Lebreton S; Rault-Leonardon M; Vélot C; Srere PA
    Biochemistry; 1999 Jan; 38(3):881-9. PubMed ID: 9893982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae.
    Miyagi H; Kawai S; Murata K
    J Biol Chem; 2009 Mar; 284(12):7553-60. PubMed ID: 19158096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Saccharomyces cerevisiae mitochondrial succinate:ubiquinone oxidoreductase.
    Lemire BD; Oyedotun KS
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):102-16. PubMed ID: 11803020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities of mitochondrial enzymes during aerobic synchronous growth of aerobically and anaerobically grown Saccharomyces cerevisiae.
    Nejedlý K; Greksák M
    Folia Microbiol (Praha); 1977; 22(1):19-29. PubMed ID: 190089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical assays for mitochondrial activity: assays of TCA cycle enzymes and PDHc.
    Reisch AS; Elpeleg O
    Methods Cell Biol; 2007; 80():199-222. PubMed ID: 17445696
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetics of the coupled reaction catalysed by a fusion protein of yeast mitochondrial malate dehydrogenase and citrate synthase.
    Pettersson H; Olsson P; Bülow L; Pettersson G
    Eur J Biochem; 2000 Aug; 267(16):5041-6. PubMed ID: 10931186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Terminal oxidation pathways in propionic acid bacteria].
    Bonartseva GA; Kraĭnova OA; Vorob'eva LI
    Mikrobiologiia; 1973; 42(4):583-8. PubMed ID: 4151565
    [No Abstract]   [Full Text] [Related]  

  • 20. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon.
    Vélot C; Mixon MB; Teige M; Srere PA
    Biochemistry; 1997 Nov; 36(47):14271-6. PubMed ID: 9400365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.