BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 11502178)

  • 1. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism.
    Osborne MJ; Schnell J; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2001 Aug; 40(33):9846-59. PubMed ID: 11502178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6327-35. PubMed ID: 9572847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cofactor binding and loop conformation on side chain methyl dynamics in dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Biochemistry; 2004 Jan; 43(2):374-83. PubMed ID: 14717591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.
    Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational change of the methionine 20 loop of Escherichia coli dihydrofolate reductase modulates pKa of the bound dihydrofolate.
    Khavrutskii IV; Price DJ; Lee J; Brooks CL
    Protein Sci; 2007 Jun; 16(6):1087-100. PubMed ID: 17473015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Active Site Loop Dynamics in Mediating Ligand Release from
    Singh A; Fenwick RB; Dyson HJ; Wright PE
    Biochemistry; 2021 Sep; 60(35):2663-2671. PubMed ID: 34428034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis.
    Boehr DD; Dyson HJ; Wright PE
    Biochemistry; 2008 Sep; 47(35):9227-33. PubMed ID: 18690714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interloop contacts modulate ligand cycling during catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Wahnon DC; Benkovic SJ
    Biochemistry; 2001 Jan; 40(4):867-75. PubMed ID: 11170407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic scale determination of enzyme flexibility and active site stability through static modes: case of dihydrofolate reductase.
    Brut M; Estève A; Landa G; Renvez G; Djafari Rouhani M; Vaisset M
    J Phys Chem B; 2011 Feb; 115(7):1616-22. PubMed ID: 21287995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of the dihydrofolate reductase-folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features.
    Epstein DM; Benkovic SJ; Wright PE
    Biochemistry; 1995 Sep; 34(35):11037-48. PubMed ID: 7669761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of water in the catalytic cycle of E. coli dihydrofolate reductase.
    Shrimpton P; Allemann RK
    Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the Met
    Mhashal AR; Vardi-Kilshtain A; Kohen A; Major DT
    J Biol Chem; 2017 Aug; 292(34):14229-14239. PubMed ID: 28620051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations.
    Arora K; Brooks Iii CL
    J Am Chem Soc; 2009 Apr; 131(15):5642-7. PubMed ID: 19323547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase.
    Boehr DD; Schnell JR; McElheny D; Bae SH; Duggan BM; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2013 Jul; 52(27):4605-19. PubMed ID: 23758161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of the G121V dihydrofolate reductase mutant: lessons from a transition-state inhibitor complex.
    Mauldin RV; Sapienza PJ; Petit CM; Lee AL
    PLoS One; 2012; 7(3):e33252. PubMed ID: 22428003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1373-8. PubMed ID: 20080605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.