These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 11502696)
1. Functional evidence for a role of vascular chymase in the production of angiotensin II in isolated human arteries. Richard V; Hurel-Merle S; Scalbert E; Ferry G; Lallemand F; Bessou JP; Thuillez C Circulation; 2001 Aug; 104(7):750-2. PubMed ID: 11502696 [TBL] [Abstract][Full Text] [Related]
2. ACE-versus chymase-dependent angiotensin II generation in human coronary arteries: a matter of efficiency? Tom B; Garrelds IM; Scalbert E; Stegmann AP; Boomsma F; Saxena PR; Danser AH Arterioscler Thromb Vasc Biol; 2003 Feb; 23(2):251-6. PubMed ID: 12588767 [TBL] [Abstract][Full Text] [Related]
3. Vasoconstrictor effect of the angiotensin-converting enzyme-resistant, chymase-specific substrate [Pro(11)(D)-Ala(12)] angiotensin I in human dorsal hand veins: in vivo demonstration of non-ace production of angiotensin II in humans. McDonald JE; Padmanabhan N; Petrie MC; Hillier C; Connell JM; McMurray JJ Circulation; 2001 Oct; 104(15):1805-8. PubMed ID: 11591618 [TBL] [Abstract][Full Text] [Related]
4. Vasoconstriction by in situ formed angiotensin II: role of ACE and chymase. MaassenVanDenBrink A; de Vries R; Saxena PR; Schalekamp MA; Danser AH Cardiovasc Res; 1999 Nov; 44(2):407-15. PubMed ID: 10690317 [TBL] [Abstract][Full Text] [Related]
5. Functional evidence for alternative ANG II-forming pathways in hamster cardiovascular system. Nishimura H; Buikema H; Baltatu O; Ganten D; Urata H Am J Physiol; 1998 Oct; 275(4):H1307-12. PubMed ID: 9746480 [TBL] [Abstract][Full Text] [Related]
7. The functional ratio of chymase and angiotensin converting enzyme in angiotensin I-induced vascular contraction in monkeys, dogs and rats. Jin D; Takai S; Yamada M; Sakaguchi M; Miyazaki M Jpn J Pharmacol; 2000 Dec; 84(4):449-54. PubMed ID: 11202618 [TBL] [Abstract][Full Text] [Related]
8. Angiotensin converting enzyme (ACE) and non-ACE dependent angiotensin II generation in resistance arteries from patients with heart failure and coronary heart disease. Petrie MC; Padmanabhan N; McDonald JE; Hillier C; Connell JM; McMurray JJ J Am Coll Cardiol; 2001 Mar; 37(4):1056-61. PubMed ID: 11263608 [TBL] [Abstract][Full Text] [Related]
9. [Pathophysiological roles of chymase and effects of chymase inhibitor]. Takai S; Jin D; Miyazaki M Nihon Yakurigaku Zasshi; 1999 Oct; 114 Suppl 1():41P-47P. PubMed ID: 10629853 [TBL] [Abstract][Full Text] [Related]
10. Vasoconstrictor action of angiotensin I-convertase and the synthetic substrate (Pro11,D-Ala12)-angiotensin I. Mangiapane ML; Rauch AL; MacAndrew JT; Ellery SS; Hoover KW; Knight DR; Johnson HA; Magee WP; Cushing DJ; Buchholz RA Hypertension; 1994 Jun; 23(6 Pt 2):857-60. PubMed ID: 8206618 [TBL] [Abstract][Full Text] [Related]
11. Dual pathway for angiotensin II formation in human internal mammary arteries. Voors AA; Pinto YM; Buikema H; Urata H; Oosterga M; Rooks G; Grandjean JG; Ganten D; van Gilst WH Br J Pharmacol; 1998 Nov; 125(5):1028-32. PubMed ID: 9846641 [TBL] [Abstract][Full Text] [Related]
12. Effects of angiotensin II generated by an angiotensin converting enzyme-independent pathway on left ventricular performance in the conscious baboon. Hoit BD; Shao Y; Kinoshita A; Gabel M; Husain A; Walsh RA J Clin Invest; 1995 Apr; 95(4):1519-27. PubMed ID: 7706457 [TBL] [Abstract][Full Text] [Related]
13. Differences between angiotensin-converting enzyme inhibition and angiotensin II-AT1 antagonism on angiotensin-mediated responses in human internal mammary arteries. Voors AA; Oosterga M; Buikema H; Mariani M; Grandjean JG; van Gilst WH J Cardiovasc Pharmacol; 2003 Feb; 41(2):178-84. PubMed ID: 12548077 [TBL] [Abstract][Full Text] [Related]
14. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Ahmad S; Varagic J; VonCannon JL; Groban L; Collawn JF; Dell'Italia LJ; Ferrario CM Biochem Biophys Res Commun; 2016 Sep; 478(2):559-64. PubMed ID: 27465904 [TBL] [Abstract][Full Text] [Related]
15. Angiotensin converting enzyme-independent angiotensin ii production by chymase is up-regulated in the ischemic kidney in renovascular hypertension. Sadjadi J; Kramer GL; Yu CH; Burress Welborn M; Chappell MC; Gregory Modrall J J Surg Res; 2005 Aug; 127(2):65-9. PubMed ID: 15869764 [TBL] [Abstract][Full Text] [Related]
16. Angiotensin-converting enzyme-independent contraction to angiotensin I in human resistance arteries. Padmanabhan N; Jardine AG; McGrath JC; Connell JM Circulation; 1999 Jun; 99(22):2914-20. PubMed ID: 10359736 [TBL] [Abstract][Full Text] [Related]
17. Functional role, cellular source, and tissue distribution of rat elastase-2, an angiotensin II-forming enzyme. Santos CF; Caprio MA; Oliveira EB; Salgado MC; Schippers DN; Munzenmaier DH; Greene AS Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H775-83. PubMed ID: 12714330 [TBL] [Abstract][Full Text] [Related]
18. Regulation of local angiotensin II formation in the human heart in the presence of interstitial fluid. Inhibition of chymase by protease inhibitors of interstitial fluid and of angiotensin-converting enzyme by Ang-(1-9) formed by heart carboxypeptidase A-like activity. Kokkonen JO; Saarinen J; Kovanen PT Circulation; 1997 Mar; 95(6):1455-63. PubMed ID: 9118513 [TBL] [Abstract][Full Text] [Related]
19. Chymase-dependent angiotensin II formation in human vascular tissue. Takai S; Jin D; Sakaguchi M; Miyazaki M Circulation; 1999 Aug; 100(6):654-8. PubMed ID: 10441104 [TBL] [Abstract][Full Text] [Related]
20. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. Urata H; Kinoshita A; Misono KS; Bumpus FM; Husain A J Biol Chem; 1990 Dec; 265(36):22348-57. PubMed ID: 2266130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]