BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11502736)

  • 1. Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold.
    Rajini B; Shridas P; Sundari CS; Muralidhar D; Chandani S; Thomas F; Sharma Y
    J Biol Chem; 2001 Oct; 276(42):38464-71. PubMed ID: 11502736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-binding crystallins from Yersinia pestis. Characterization of two single betagamma-crystallin domains of a putative exported protein.
    Jobby MK; Sharma Y
    J Biol Chem; 2005 Jan; 280(2):1209-16. PubMed ID: 15536081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caulollins from Caulobacter crescentus, a pair of partially unstructured proteins of betagamma-crystallin superfamily, gain structure upon binding calcium.
    Jobby MK; Sharma Y
    Biochemistry; 2007 Oct; 46(43):12298-307. PubMed ID: 17915944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins.
    Jobby MK; Sharma Y
    FEBS J; 2007 Aug; 274(16):4135-47. PubMed ID: 17651443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability, homodimerization, and calcium-binding properties of a single, variant betagamma-crystallin domain of the protein absent in melanoma 1 (AIM1).
    Rajini B; Graham C; Wistow G; Sharma Y
    Biochemistry; 2003 Apr; 42(15):4552-9. PubMed ID: 12693952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure and calcium-binding properties of M-crystallin, a primordial betagamma-crystallin from archaea.
    Barnwal RP; Jobby MK; Devi KM; Sharma Y; Chary KV
    J Mol Biol; 2009 Feb; 386(3):675-89. PubMed ID: 19138688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium Binding Dramatically Stabilizes an Ancestral Crystallin Fold in Tunicate βγ-Crystallin.
    Kozlyuk N; Sengupta S; Bierma JC; Martin RW
    Biochemistry; 2016 Dec; 55(50):6961-6968. PubMed ID: 27992995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel interdomain interface in crystallins: structural characterization of the βγ-crystallin from Geodia cydonium at 0.99 Å resolution.
    Vergara A; Grassi M; Sica F; Pizzo E; D'Alessio G; Mazzarella L; Merlino A
    Acta Crystallogr D Biol Crystallogr; 2013 Jun; 69(Pt 6):960-7. PubMed ID: 23695240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The betagamma-crystallin superfamily contains a universal motif for binding calcium.
    Aravind P; Mishra A; Suman SK; Jobby MK; Sankaranarayanan R; Sharma Y
    Biochemistry; 2009 Dec; 48(51):12180-90. PubMed ID: 19921810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin.
    Mills IA; Flaugh SL; Kosinski-Collins MS; King JA
    Protein Sci; 2007 Nov; 16(11):2427-44. PubMed ID: 17905830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution structure of an oligomeric eye lens beta-crystallin. Loops, arches, linkers and interfaces in beta B2 dimer compared to a monomeric gamma-crystallin.
    Lapatto R; Nalini V; Bax B; Driessen H; Lindley PF; Blundell TL; Slingsby C
    J Mol Biol; 1991 Dec; 222(4):1067-83. PubMed ID: 1762146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the gamma-crystallins isolated from eye lenses of shark and carp. Unique secondary and tertiary structure of shark gamma-crystallin.
    Chiou SH; Chen SW; Itoh T; Kaji H; Samejima T
    FEBS Lett; 1990 Nov; 275(1-2):111-3. PubMed ID: 2261977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the limits of sequence and structure in a variant betagamma-crystallin domain of the protein absent in melanoma-1 (AIM1).
    Aravind P; Wistow G; Sharma Y; Sankaranarayanan R
    J Mol Biol; 2008 Sep; 381(3):509-18. PubMed ID: 18582473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the βγ-crystallin domains of βγ-CAT, a non-lens βγ-crystallin and trefoil factor complex, from the skin of the toad Bombina maxima.
    Gao Q; Xiang Y; Zeng L; Ma XT; Lee WH; Zhang Y
    Biochimie; 2011 Oct; 93(10):1865-72. PubMed ID: 21784123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and structural studies of alpha-crystallin from galactosemic rat lenses.
    Huang FY; Ho Y; Shaw TS; Chuang SA
    Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding pattern of the alpha-crystallin domain in alphaA-crystallin determined by site-directed spin labeling.
    Koteiche HA; Mchaourab HS
    J Mol Biol; 1999 Nov; 294(2):561-77. PubMed ID: 10610780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natively unfolded βγ-crystallin domain from Hahella chejuensis.
    Srivastava AK; Sharma Y; Chary KV
    Biochemistry; 2010 Nov; 49(45):9746-55. PubMed ID: 20929244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of a new eye lens crystallin (Gambeta) through structure-guided mutagenic grafting of the surface of betaB2 crystallin onto the hydrophobic core of gammaB crystallin.
    Kapoor D; Singh B; Subramanian K; Guptasarma P
    FEBS J; 2009 Jun; 276(12):3341-53. PubMed ID: 19438717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the sequence-structure-function relationship for the intrinsically disordered βγ-crystallin Hahellin.
    Gao M; Yang F; Zhang L; Su Z; Huang Y
    J Biomol Struct Dyn; 2018 Apr; 36(5):1171-1181. PubMed ID: 28393629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational heterogeneity and dynamics in a βγ-crystallin from Hahella chejuensis.
    Srivastava AK; Chary KV
    Biophys Chem; 2011 Aug; 157(1-3):7-15. PubMed ID: 21549498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.