These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11502857)

  • 101. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo.
    Palermo B; Campanelli R; Garbelli S; Mantovani S; Lantelme E; Brazzelli V; Ardigó M; Borroni G; Martinetti M; Badulli C; Necker A; Giachino C
    J Invest Dermatol; 2001 Aug; 117(2):326-32. PubMed ID: 11511311
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Identification of the Role of Wnt/β-Catenin Pathway Through Integrated Analyses and in vivo Experiments in Vitiligo.
    Zhao SJ; Jia H; Xu XL; Bu WB; Zhang Q; Chen X; Ji J; Sun JF
    Clin Cosmet Investig Dermatol; 2021; 14():1089-1103. PubMed ID: 34511958
    [TBL] [Abstract][Full Text] [Related]  

  • 103. The importance of the neuro-immuno-cutaneous system on human skin equivalent design.
    Vidal Yucha SE; Tamamoto KA; Kaplan DL
    Cell Prolif; 2019 Nov; 52(6):e12677. PubMed ID: 31441145
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Neural and Endocrinal Pathobiochemistry of Vitiligo: Comparative Study for a Hypothesized Mechanism.
    Kotb El-Sayed MI; Abd El-Ghany AA; Mohamed RR
    Front Endocrinol (Lausanne); 2018; 9():197. PubMed ID: 29922226
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.
    Dey-Rao R; Sinha AA
    BMC Genomics; 2017 Jan; 18(1):109. PubMed ID: 28129744
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Highlights in pathogenesis of vitiligo.
    Mohammed GF; Gomaa AH; Al-Dhubaibi MS
    World J Clin Cases; 2015 Mar; 3(3):221-30. PubMed ID: 25789295
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Immune responses in a mouse model of vitiligo with spontaneous epidermal de- and repigmentation.
    Eby JM; Kang HK; Klarquist J; Chatterjee S; Mosenson JA; Nishimura MI; Garrett-Mayer E; Longley BJ; Engelhard VH; Mehrotra S; Le Poole IC
    Pigment Cell Melanoma Res; 2014 Nov; 27(6):1075-85. PubMed ID: 24935676
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Treatment of vitiligo with a chimeric monoclonal antibody to CD20: a pilot study.
    Ruiz-Argüelles A; García-Carrasco M; Jimenez-Brito G; Sánchez-Sosa S; Pérez-Romano B; Garcés-Eisele J; Camacho-Alarcón C; Reyes-Núñez V; Sandoval-Cruz M; Mendoza-Pinto C; López-Colombo A
    Clin Exp Immunol; 2013 Nov; 174(2):229-36. PubMed ID: 23815517
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Immunophenotypic characterization of lymphoid cell infiltrates in vitiligo.
    Sanchez-Sosa S; Aguirre-Lombardo M; Jimenez-Brito G; Ruiz-Argüelles A
    Clin Exp Immunol; 2013 Aug; 173(2):179-83. PubMed ID: 23607858
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Serum concentration of IL-6, IL-2, TNF-α, and IFNγ in Vitiligo patients.
    Singh S; Singh U; Pandey SS
    Indian J Dermatol; 2012 Jan; 57(1):12-4. PubMed ID: 22470201
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Original article title: "Comparison of therapeutic efficacy of topical corticosteroid and oral zinc sulfate-topical corticosteroid combination in the treatment of vitiligo patients: a clinical trial".
    Yaghoobi R; Omidian M; Bagherani N
    BMC Dermatol; 2011 Mar; 11():7. PubMed ID: 21453467
    [TBL] [Abstract][Full Text] [Related]  

  • 112. CTLA-4 A49G gene polymorphism is not associated with vitiligo in South Indian population.
    Deeba F; Syed R; Quareen J; Waheed MA; Jamil K; Rao H
    Indian J Dermatol; 2010; 55(1):29-32. PubMed ID: 20418973
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Lymphocyte imbalance in vitiligo patients indicated by elevated CD4+/CD8+ T-cell ratio.
    Pichler R; Sfetsos K; Badics B; Gutenbrunner S; Berg J; Auböck J
    Wien Med Wochenschr; 2009; 159(13-14):337-41. PubMed ID: 19652940
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Transfer of efficient anti-melanocyte T cells from vitiligo donors to melanoma patients as a novel immunotherapeutical strategy.
    Palermo B; Garbelli S; Mantovani S; Giachino C
    J Autoimmune Dis; 2005 Aug; 2():7. PubMed ID: 16135249
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Hypopigmentary skin disorders: current treatment options and future directions.
    Hartmann A; Bröcker EB; Becker JC
    Drugs; 2004; 64(1):89-107. PubMed ID: 14723560
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Autoimmune melanocyte destruction in vitiligo.
    van den Wijngaard R; Wankowicz-Kalinska A; Pals S; Weening J; Das P
    Lab Invest; 2001 Aug; 81(8):1061-7. PubMed ID: 11502857
    [No Abstract]   [Full Text] [Related]  

  • 117. Cytokines: the yin and yang of vitiligo pathogenesis.
    Singh M; Kotnis A; Jadeja SD; Mondal A; Mansuri MS; Begum R
    Expert Rev Clin Immunol; 2019 Feb; 15(2):177-188. PubMed ID: 30462555
    [TBL] [Abstract][Full Text] [Related]  

  • 118. The genetics of generalized vitiligo.
    Spritz RA
    Curr Dir Autoimmun; 2008; 10():244-57. PubMed ID: 18460890
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Evidence for an autoimmune pathogenesis of vitiligo.
    Ongenae K; Van Geel N; Naeyaert JM
    Pigment Cell Res; 2003 Apr; 16(2):90-100. PubMed ID: 12622785
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris.
    Kotobuki Y; Tanemura A; Yang L; Itoi S; Wataya-Kaneda M; Murota H; Fujimoto M; Serada S; Naka T; Katayama I
    Pigment Cell Melanoma Res; 2012 Mar; 25(2):219-30. PubMed ID: 22136309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.