These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 11504032)
1. Sequestration of host plant-derived compounds by geometrid moth, Milionia basalis, toxic to a predatory stink bug, Eocanthecona furcellata. Yasui H J Chem Ecol; 2001 Jul; 27(7):1345-53. PubMed ID: 11504032 [TBL] [Abstract][Full Text] [Related]
2. A comparison of infectivity between polyhedra of the Spodoptera litura multiple nucleopolyhedrovirus before and after passage through the gut of the stink bug, Eocanthecona furcellata. Gupta RK; Gani M; Jasrotia P; Srivastava K; Kaul V J Insect Sci; 2014; 14():96. PubMed ID: 25368052 [TBL] [Abstract][Full Text] [Related]
3. The complete mitochondrial genome of the stink bug Guo Y; Xiao J; Li D; Wang J Mitochondrial DNA B Resour; 2021; 6(10):3085-3086. PubMed ID: 34595345 [TBL] [Abstract][Full Text] [Related]
4. Linking Life Table and Predation Rate for Biological Control: A Comparative Study of Eocanthecona furcellata (Hemiptera: Pentatomidae) Fed on Spodoptera litura (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Plutellidae). Tuan SJ; Yeh CC; Atlihan R; Chi H J Econ Entomol; 2016 Feb; 109(1):13-24. PubMed ID: 26374904 [TBL] [Abstract][Full Text] [Related]
5. Sublethal effect of chlorpyrifos on predatory behavior and physiology of Eocanthecona furcellata (Hemiptera: Pentatomidae). Xu S; Yao Q; Quan L; Dong Y; Chen B; Zeng D J Econ Entomol; 2024 Feb; 117(1):156-166. PubMed ID: 37978042 [TBL] [Abstract][Full Text] [Related]
6. Effect of rearing conditions on production of sternal gland secretion, and identification of minor components in the sternal gland secretion of the predatory stink bug Eocanthecona furcellata. Ho HY; Hsu YC; Chuang YC; Chow YS J Chem Ecol; 2005 Jan; 31(1):29-37. PubMed ID: 15839477 [TBL] [Abstract][Full Text] [Related]
7. Hostplant suitability and defensive chemistry of the Catalpa sphinx, Ceratomia catalpae. Bowers MD J Chem Ecol; 2003 Oct; 29(10):2359-67. PubMed ID: 14682517 [TBL] [Abstract][Full Text] [Related]
8. Semiochemicals from the predatory stink bug Eocanthecona furcellata (Wolff): components of metathoracic gland, dorsal abdominal gland, and sternal gland secretions. Ho HY; Kou R; Tseng HK J Chem Ecol; 2003 Sep; 29(9):2101-14. PubMed ID: 14584678 [TBL] [Abstract][Full Text] [Related]
9. Detrimental Impact of λ-Cyhalothrin on the Biocontrol Efficacy of Qiong Y; Linfa Q; Shu X; Longyu Y; Bingxu C J Agric Food Chem; 2022 Feb; 70(4):1037-1046. PubMed ID: 35043630 [TBL] [Abstract][Full Text] [Related]
10. Fitness implications of low-temperature storage for Eocanthecona furcellata (Hemiptera: Pentatomidae). Pan CN; Zhou W; Lu CH; Pan YN; Liu LY; Chen WL J Econ Entomol; 2024 Oct; 117(5):1739-1752. PubMed ID: 39241700 [TBL] [Abstract][Full Text] [Related]
11. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. Müller C; Agerbirk N; Olsen CE; Boevé JL; Schaffner U; Brakefield PM J Chem Ecol; 2001 Dec; 27(12):2505-16. PubMed ID: 11789955 [TBL] [Abstract][Full Text] [Related]
12. Decreased cuticular penetration minimizes the impact of the pyrethroid insecticide λ-cyhalothrin on the insect predator Eocanthecona furcellata. Pang R; Chen B; Wang S; Chi Y; Huang S; Xing D; Yao Q Ecotoxicol Environ Saf; 2023 Jan; 249():114369. PubMed ID: 36508800 [TBL] [Abstract][Full Text] [Related]
13. Gross morphology and ultrastructure of the salivary glands of the stink bug predator Eocanthecona furcellata (Wolff). Gao P; Liao X; Wu G; Li L; Lan M; Hussain M; Chen B; Tang G; Xie Y; Gao X Microsc Res Tech; 2021 Feb; 84(2):246-252. PubMed ID: 32893922 [TBL] [Abstract][Full Text] [Related]
14. Parasitism and predation of stink bug (Heteroptera: Pentatomidae) eggs in Georgia corn fields. Tillman PG Environ Entomol; 2010 Aug; 39(4):1184-94. PubMed ID: 22127170 [TBL] [Abstract][Full Text] [Related]
15. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore. Martins CH; Cunha BP; Solferini VN; Trigo JR PLoS One; 2015; 10(10):e0141480. PubMed ID: 26517873 [TBL] [Abstract][Full Text] [Related]
16. 7α,8α-Epoxynagilactones and their glucosides from the twigs of Podocarpus nagi: Isolation, structures, and cytotoxic activities. Zheng YD; Bai G; Tang C; Ke CQ; Yao S; Tong LJ; Feng F; Li Y; Ding J; Xie H; Ye Y Fitoterapia; 2018 Mar; 125():174-183. PubMed ID: 29355751 [TBL] [Abstract][Full Text] [Related]
17. Insect-control chemicals from plants. Nagilactone C, a toxic substance from the leaves of Podocarpus nivalis and P. hallii. Russell GB; Fenemore PG; Singh P Aust J Biol Sci; 1972 Oct; 25(5):1025-9. PubMed ID: 4663341 [No Abstract] [Full Text] [Related]
18. Predatory stink bug, Eocanthecona furcellata (Wolff) responses to oral exposure route of λ-cyhalothrin via sex-specific modulation manner. Yao Q; Quan L; Wang S; Xing D; Chen B; Lu K Pestic Biochem Physiol; 2023 May; 192():105381. PubMed ID: 37105612 [TBL] [Abstract][Full Text] [Related]
19. Effect of nagilactone E on cell morphology and glucan biosynthesis in budding yeast Saccharomyces cerevisiae. Hayashi K; Yamaguchi Y; Ogita A; Tanaka T; Kubo I; Fujita KI Fitoterapia; 2018 Jul; 128():112-117. PubMed ID: 29772300 [TBL] [Abstract][Full Text] [Related]
20. Identification and functional analysis of serine protease inhibitor gene family of Zhang M; Dai Z; Chen X; Qin D; Zhu G; Zhu T; Chen G; Ding Y; Wu G; Gao X Front Physiol; 2023; 14():1248354. PubMed ID: 37795265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]