BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11504087)

  • 1. Monte Carlo evaluation of object shape effects in iodine-131 SPET tumor activity quantification.
    Dewaraja YK; Ljungberg M; Koral KF
    Eur J Nucl Med; 2001 Jul; 28(7):900-6. PubMed ID: 11504087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of 131I tumor quantification in radioimmunotherapy using SPECT imaging with an ultra-high-energy collimator: Monte Carlo study.
    Dewaraja YK; Ljungberg M; Koral KF
    J Nucl Med; 2000 Oct; 41(10):1760-7. PubMed ID: 11038009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging.
    Dewaraja YK; Ljungberg M; Koral KF
    J Nucl Med; 2000 Jan; 41(1):123-30. PubMed ID: 10647615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplifying volumes-of-interest (VOIs) definition in quantitative SPECT: Beyond manual definition of 3D whole-organ VOIs.
    Vicente EM; Lodge MA; Rowe SP; Wahl RL; Frey EC
    Med Phys; 2017 May; 44(5):1707-1717. PubMed ID: 28207950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of reconstruction parameters on quantitative I-131 SPECT.
    van Gils CA; Beijst C; van Rooij R; de Jong HW
    Phys Med Biol; 2016 Jul; 61(14):5166-82. PubMed ID: 27352225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An innovative iterative thresholding algorithm for tumour segmentation and volumetric quantification on SPECT images: Monte Carlo-based methodology and validation.
    Pacilio M; Basile C; Shcherbinin S; Caselli F; Ventroni G; Aragno D; Mango L; Santini E
    Med Phys; 2011 Jun; 38(6):3050-61. PubMed ID: 21815378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of quantitative 123I and 131I SPECT with Monte Carlo-based down-scatter compensation.
    Kangasmaa TS; Constable C; Sohlberg AO
    Nucl Med Commun; 2018 Dec; 39(12):1097-1102. PubMed ID: 30222722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study.
    el Fakhri GN; Buvat I; Pélégrini M; Benali H; Almeida P; Bendriem B; Todd-Pokropek A; Di Paola R
    Eur J Nucl Med; 1999 May; 26(5):437-46. PubMed ID: 10382086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of Rhenium-188 SPECT/CT activity quantification for applications in radionuclide therapy using clinical reconstruction methods.
    Esquinas PL; Uribe CF; Gonzalez M; Rodríguez-Rodríguez C; Häfeli UO; Celler A
    Phys Med Biol; 2017 Jul; 62(16):6379-6396. PubMed ID: 28726679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image quantification for radiation dose calculations--limitations and uncertainties.
    Pereira JM; Stabin MG; Lima FR; Guimarães MI; Forrester JW
    Health Phys; 2010 Nov; 99(5):688-701. PubMed ID: 20938240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for (131)I using monte carlo simulation.
    Ljungberg M; Sjögreen K; Liu X; Frey E; Dewaraja Y; Strand SE
    J Nucl Med; 2002 Aug; 43(8):1101-9. PubMed ID: 12163637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative single photon emission tomography: verification for sources in an elliptical water phantom.
    Ljungberg MH; King MA; Strand SE
    Eur J Nucl Med; 1992; 19(10):838-44. PubMed ID: 1451697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Iodine-123 and Iodine-131 SPECT activity quantification: a Monte Carlo study.
    Morphis M; van Staden JA; du Raan H; Ljungberg M
    EJNMMI Phys; 2021 Aug; 8(1):61. PubMed ID: 34410539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitation of tumor uptake with molecular breast imaging.
    Bache ST; Kappadath SC
    Med Phys; 2017 Sep; 44(9):4593-4607. PubMed ID: 28600857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo investigation of dual-energy-window scatter correction for volume-of-interest quantification in 99Tcm SPECT.
    Luo JQ; Koral KF; Ljungberg M; Floyd CE; Jaszczak RJ
    Phys Med Biol; 1995 Jan; 40(1):181-99. PubMed ID: 7708840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An activity quantification method based on registration of CT and whole-body scintillation camera images, with application to 131I.
    Sjögreen K; Ljungberg M; Strand SE
    J Nucl Med; 2002 Jul; 43(7):972-82. PubMed ID: 12097471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based compensation for quantitative 123I brain SPECT imaging.
    Du Y; Tsui BM; Frey EC
    Phys Med Biol; 2006 Mar; 51(5):1269-82. PubMed ID: 16481693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method.
    Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC
    Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous (99m)Tc/(201)Tl dual-isotope SPET with Monte Carlo-based down-scatter correction.
    de Jong HW; Beekman FJ; Viergever MA; van Rijk PP
    Eur J Nucl Med Mol Imaging; 2002 Aug; 29(8):1063-71. PubMed ID: 12173021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scatter characterization and correction for simultaneous multiple small-animal PET imaging.
    Prasad R; Zaidi H
    Mol Imaging Biol; 2014 Apr; 16(2):199-209. PubMed ID: 23990147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.