These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 11504613)
1. Sialic acid synthase: the origin of fish type III antifreeze protein? Baardsnes J; Davies PL Trends Biochem Sci; 2001 Aug; 26(8):468-9. PubMed ID: 11504613 [TBL] [Abstract][Full Text] [Related]
2. Solution structure of the antifreeze-like domain of human sialic acid synthase. Hamada T; Ito Y; Abe T; Hayashi F; Güntert P; Inoue M; Kigawa T; Terada T; Shirouzu M; Yoshida M; Tanaka A; Sugano S; Yokoyama S; Hirota H Protein Sci; 2006 May; 15(5):1010-6. PubMed ID: 16597820 [TBL] [Abstract][Full Text] [Related]
3. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase. Choi YG; Park CJ; Kim HE; Seo YJ; Lee AR; Choi SR; Lee SS; Lee JH J Biomol NMR; 2015 Feb; 61(2):137-50. PubMed ID: 25575834 [TBL] [Abstract][Full Text] [Related]
4. Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein. Baardsnes J; Davies PL Biochim Biophys Acta; 2002 Nov; 1601(1):49-54. PubMed ID: 12429502 [TBL] [Abstract][Full Text] [Related]
5. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Garnham CP; Natarajan A; Middleton AJ; Kuiper MJ; Braslavsky I; Davies PL Biochemistry; 2010 Oct; 49(42):9063-71. PubMed ID: 20853841 [TBL] [Abstract][Full Text] [Related]
6. NMR analysis of type III antifreeze protein intramolecular dimer. Structural basis for enhanced activity. Miura K; Ohgiya S; Hoshino T; Nemoto N; Suetake T; Miura A; Spyracopoulos L; Kondo H; Tsuda S J Biol Chem; 2001 Jan; 276(2):1304-10. PubMed ID: 11010977 [TBL] [Abstract][Full Text] [Related]
7. Understanding the mechanism of ice binding by type III antifreeze proteins. Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099 [TBL] [Abstract][Full Text] [Related]
8. Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria meningitidis in complex with Mn2+, phosphoenolpyruvate, and N-acetylmannosaminitol. Gunawan J; Simard D; Gilbert M; Lovering AL; Wakarchuk WW; Tanner ME; Strynadka NC J Biol Chem; 2005 Feb; 280(5):3555-63. PubMed ID: 15516336 [TBL] [Abstract][Full Text] [Related]
9. NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein. Choi SR; Seo YJ; Kim M; Eo Y; Ahn HC; Lee AR; Park CJ; Ryu KS; Cheong HK; Lee SS; Jin E; Lee JH FEBS Lett; 2016 Dec; 590(23):4202-4212. PubMed ID: 27718246 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges. García-Arribas O; Mateo R; Tomczak MM; Davies PL; Mateu MG Protein Sci; 2007 Feb; 16(2):227-38. PubMed ID: 17189482 [TBL] [Abstract][Full Text] [Related]
11. Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Deng C; Cheng CH; Ye H; He X; Chen L Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21593-8. PubMed ID: 21115821 [TBL] [Abstract][Full Text] [Related]
12. Solid-state NMR on a type III antifreeze protein in the presence of ice. Siemer AB; McDermott AE J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456 [TBL] [Abstract][Full Text] [Related]
13. The refined crystal structure of an eel pout type III antifreeze protein RD1 at 0.62-A resolution reveals structural microheterogeneity of protein and solvation. Ko TP; Robinson H; Gao YG; Cheng CH; DeVries AL; Wang AH Biophys J; 2003 Feb; 84(2 Pt 1):1228-37. PubMed ID: 12547803 [TBL] [Abstract][Full Text] [Related]
14. Aggregation of antifreeze protein and impact on antifreeze activity. Du N; Liu XY; Hew CL J Phys Chem B; 2006 Oct; 110(41):20562-7. PubMed ID: 17034244 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Ewart KV; Rubinsky B; Fletcher GL Biochem Biophys Res Commun; 1992 May; 185(1):335-40. PubMed ID: 1599470 [TBL] [Abstract][Full Text] [Related]
16. Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. Garnham CP; Nishimiya Y; Tsuda S; Davies PL FEBS Lett; 2012 Nov; 586(21):3876-81. PubMed ID: 23017208 [TBL] [Abstract][Full Text] [Related]
17. The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin. Loewen MC; Gronwald W; Sönnichsen FD; Sykes BD; Davies PL Biochemistry; 1998 Dec; 37(51):17745-53. PubMed ID: 9922140 [TBL] [Abstract][Full Text] [Related]
19. [Characterization of a multimer type III antifreeze protein gene from the Antarctic eel pout (Lycodichthys dearborni)]. Yu J; Cheng CH; DeVries AL; Chen LB Yi Chuan Xue Bao; 2005 Aug; 32(8):789-94. PubMed ID: 16231732 [TBL] [Abstract][Full Text] [Related]
20. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]