These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11504626)

  • 1. Enzyme catalysis: removing chemically 'essential' residues by site-directed mutagenesis.
    Peracchi A
    Trends Biochem Sci; 2001 Aug; 26(8):497-503. PubMed ID: 11504626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D
    Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges in enzyme mechanism and energetics.
    Kraut DA; Carroll KS; Herschlag D
    Annu Rev Biochem; 2003; 72():517-71. PubMed ID: 12704087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases.
    Varfolomeev SD; Uporov IV; Fedorov EV
    Biochemistry (Mosc); 2002 Oct; 67(10):1099-108. PubMed ID: 12460108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site directed mutagenesis: a tool for enzyme mechanism dissection.
    Wagner CR; Benkovic SJ
    Trends Biotechnol; 1990 Sep; 8(9):263-70. PubMed ID: 1366735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of conserved active site residues in catalysis by phospholipase B1 from Cryptococcus neoformans.
    Jones PM; Turner KM; Djordjevic JT; Sorrell TC; Wright LC; George AM
    Biochemistry; 2007 Sep; 46(35):10024-32. PubMed ID: 17685590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of catalytic residues in enzyme active sites.
    Bartlett GJ; Porter CT; Borkakoti N; Thornton JM
    J Mol Biol; 2002 Nov; 324(1):105-21. PubMed ID: 12421562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tinkering with enzymes: what are we learning?
    Knowles JR
    Science; 1987 Jun; 236(4806):1252-8. PubMed ID: 3296192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-Guided Surface Engineering for Enzyme Improvement.
    Wilding M; Scott C; Warden AC
    Sci Rep; 2018 Aug; 8(1):11998. PubMed ID: 30097591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase.
    Montero-Morán GM; Lara-González S; Alvarez-Añorve LI; Plumbridge JA; Calcagno ML
    Biochemistry; 2001 Aug; 40(34):10187-96. PubMed ID: 11513596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of putative active site residues of 5-enolpyruvylshikimate-3-phosphate synthase.
    Shuttleworth WA; Pohl ME; Helms GL; Jakeman DL; Evans JN
    Biochemistry; 1999 Jan; 38(1):296-302. PubMed ID: 9890910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain.
    Zhang S; Wilson DB; Ganem B
    Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the mechanism of phosphoenolpyruvate mutase catalysis derived from site-directed mutagenesis studies of active site residues.
    Jia Y; Lu Z; Huang K; Herzberg O; Dunaway-Mariano D
    Biochemistry; 1999 Oct; 38(43):14165-73. PubMed ID: 10571990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer modelling of enzyme catalysed reaction mechanisms.
    Mulholland AJ; Grant GH; Richards WG
    Protein Eng; 1993 Feb; 6(2):133-47. PubMed ID: 8475041
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.