BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11504685)

  • 21. Dexamethasone prevents transport inhibition by hypoxia in rat lung and alveolar epithelial cells by stimulating activity and expression of Na+-K+-ATPase and epithelial Na+ channels.
    Güney S; Schuler A; Ott A; Höschele S; Zügel S; Baloglu E; Bärtsch P; Mairbäurl H
    Am J Physiol Lung Cell Mol Physiol; 2007 Nov; 293(5):L1332-8. PubMed ID: 17873005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active sodium transport and alveolar epithelial Na-K-ATPase increase during subacute hyperoxia in rats.
    Olivera W; Ridge K; Wood LD; Sznajder JI
    Am J Physiol; 1994 May; 266(5 Pt 1):L577-84. PubMed ID: 8203551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Malnutrition impairs alveolar fluid clearance in rat lungs.
    Sakuma T; Zhao Y; Sugita M; Sagawa M; Toga H; Ishibashi T; Nishio M; Matthay MA
    Am J Physiol Lung Cell Mol Physiol; 2004 Jun; 286(6):L1268-74. PubMed ID: 14977628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effects of subacute hypoxia on alveolar epithelial ion transport in rats].
    Suzuki S; Hoshikawa Y; Ono S; Sakuma T; Koike K; Tanita T; Fujimura S
    Nihon Kyobu Shikkan Gakkai Zasshi; 1996 Jan; 34(1):52-6. PubMed ID: 8717291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single dexamethasone injection increases alveolar fluid clearance in adult rats.
    Noda M; Suzuki S; Tsubochi H; Sugita M; Maeda S; Kobayashi S; Kubo H; Kondo T
    Crit Care Med; 2003 Apr; 31(4):1183-9. PubMed ID: 12682491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alveolar but not intravenous S-ketamine inhibits alveolar sodium transport and lung fluid clearance in rats.
    Berger MM; Pitzer B; Zügel S; Wieland CW; Vlaar AP; Schultz MJ; Dahan A; Bärtsch P; Hollmann MW; Mairbäurl H
    Anesth Analg; 2010 Jul; 111(1):164-70. PubMed ID: 20519416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of solute fluxes in isolated rat lungs.
    McLaughlin GE; Kim KJ; Berg MM; Agoris P; Lubman RL; Crandall ED
    Respir Physiol; 1993 Mar; 91(2-3):321-34. PubMed ID: 8469854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vasopressin-2 receptor antagonist attenuates the ability of the lungs to clear edema in an experimental model.
    Guetta J; Klorin G; Tal R; Berger G; Ismael-Badarneh R; Bishara B; Sabo E; Abassi Z; Azzam ZS
    Am J Respir Cell Mol Biol; 2012 Nov; 47(5):583-8. PubMed ID: 22700868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of active Na+ and Cl- fluxes to net ion transport by alveolar epithelium.
    Kim KJ; Cheek JM; Crandall ED
    Respir Physiol; 1991 Aug; 85(2):245-56. PubMed ID: 1947462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alveolar epithelial fluid transport in acute lung injury: new insights.
    Sartori C; Matthay MA
    Eur Respir J; 2002 Nov; 20(5):1299-313. PubMed ID: 12449188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alveolar epithelial fluid transport and the resolution of clinically severe hydrostatic pulmonary edema.
    Verghese GM; Ware LB; Matthay BA; Matthay MA
    J Appl Physiol (1985); 1999 Oct; 87(4):1301-12. PubMed ID: 10517756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of pulmonary edema clearance.
    Mutlu GM; Sznajder JI
    Am J Physiol Lung Cell Mol Physiol; 2005 Nov; 289(5):L685-95. PubMed ID: 16214819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluid transport across cultured rat alveolar epithelial cells: a novel in vitro system.
    Fang X; Song Y; Zemans R; Hirsch J; Matthay MA
    Am J Physiol Lung Cell Mol Physiol; 2004 Jul; 287(1):L104-10. PubMed ID: 14990396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of polycations on barrier and transport properties of alveolar epithelium in situ.
    Saumon G; Soler P; Martet G
    Am J Physiol; 1995 Aug; 269(2 Pt 1):L185-94. PubMed ID: 7653579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isoproterenol improves ability of lung to clear edema in rats exposed to hyperoxia.
    Saldías FJ; Comellas A; Ridge KM; Lecuona E; Sznajder JI
    J Appl Physiol (1985); 1999 Jul; 87(1):30-5. PubMed ID: 10409555
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potassium transport across rat alveolar epithelium: evidence for an apical Na+-K+ pump.
    Basset G; Bouchonnet F; Crone C; Saumon G
    J Physiol; 1988 Jun; 400():529-43. PubMed ID: 3418536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [THE CELLULAR MECHANISMS OF LUNG EDEMA CLEARANCE: DOES THE ALVEOLAR EPITHELIUM PLAY A ROLE?].
    Berger G; Klorin G; Ismael-Badarneh R; Guetta J; Azzam ZS
    Harefuah; 2017 Oct; 156(10):663-665. PubMed ID: 29072388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Transport of ions across alveolar epithelial cells in resected human lungs].
    Sakuma T; Suzuki S; Usuda K; Handa M; Okaniwa G; Nakada T; Fujimura S
    Nihon Kyobu Shikkan Gakkai Zasshi; 1995 Sep; 33(9):966-72. PubMed ID: 8538092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid alveolar liquid removal by a novel convective mechanism.
    Wang PM; Ashino Y; Ichimura H; Bhattacharya J
    Am J Physiol Lung Cell Mol Physiol; 2001 Dec; 281(6):L1327-34. PubMed ID: 11704526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperoxic effects on alveolar sodium resorption and lung Na-K-ATPase.
    Carter EP; Wangensteen OD; Dunitz J; Ingbar DH
    Am J Physiol; 1997 Dec; 273(6):L1191-202. PubMed ID: 9435574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.