These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11505425)

  • 21. Running sutures anchored with square knots are unreliable.
    Aanning HL; Van Osdol A; Allamargot C; Becker BE; Howard TC; Likness ML; Merkwan CE; Tarver DD
    Am J Surg; 2012 Sep; 204(3):384-8. PubMed ID: 22494881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of a new polypropylene suture with Prolene.
    Chu CC; Pratt L; Zhang L; Hsu A; Chu A
    J Appl Biomater; 1993; 4(2):169-81. PubMed ID: 10148624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Knotting abilities of a new absorbable monofilament suture: poliglecaprone 25 (Monocryl).
    Trimbos JB; Niggebrugge A; Trimbos R; Van Rijssel EJ
    Eur J Surg; 1995 May; 161(5):319-22. PubMed ID: 7662774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CAPROSYN*, another major advance in synthetic monofilament absorbable suture.
    Pineros-Fernandez A; Drake DB; Rodeheaver PA; Moody DL; Edlich RF; Rodeheaver GT
    J Long Term Eff Med Implants; 2004; 14(5):359-68. PubMed ID: 15479151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EFFECTS OF ETHYLENE OXIDE RESTERILISATION AND IN-VITRO DEGRADATION ON MECHANICAL PROPERTIES OF PARTIALLY ABSORBABLE COMPOSITE HERNIA MESHES.
    Endogan T; Ozyaylali I; Kulacoglu H; Serbetci K; Kiyak G; Hasirci N
    East Afr Med J; 2013 Jun; 90(6):195-201. PubMed ID: 26859026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polydioxanone (PDS), a novel monofilament synthetic absorbable suture.
    Ray JA; Doddi N; Regula D; Williams JA; Melveger A
    Surg Gynecol Obstet; 1981 Oct; 153(4):497-507. PubMed ID: 6792722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The in-vitro degradation of poly(glycolic acid) sutures--effect of pH.
    Chu CC
    J Biomed Mater Res; 1981 Nov; 15(6):795-804. PubMed ID: 6273445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique performance characteristics of Novafil.
    Rodeheaver GT; Borzelleca DC; Thacker JG; Edlich RF
    Surg Gynecol Obstet; 1987 Mar; 164(3):230-6. PubMed ID: 3547720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of a combined gamma irradiation and Parylene plasma treatment on the hydrolytic degradation of synthetic biodegradable sutures.
    Zhang L; Chu CC; Loh IH
    J Biomed Mater Res; 1993 Nov; 27(11):1425-41. PubMed ID: 8263005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (Maxon) and polydioxanone (PDS) sutures. An in vitro study.
    Mäkelä P; Pohjonen T; Törmälä P; Waris T; Ashammakhi N
    Biomaterials; 2002 Jun; 23(12):2587-92. PubMed ID: 12033607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strength retention of chromic gut and monofilament synthetic absorbable suture materials in joint tissues.
    Walton M
    Clin Orthop Relat Res; 1989 May; (242):303-10. PubMed ID: 2495876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reinforced poly(L-lactic acid) fibres as suture material.
    Lam KH; Nijenhuis AJ; Bartels H; Postema AR; Jonkman MF; Pennings AJ; Nieuwenhuis P
    J Appl Biomater; 1995; 6(3):191-7. PubMed ID: 7492810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonabsorbable suture material in corneoscleral sections--a comparison of novafil and nylon.
    McClellan KA; Knol A; Billson FA
    Ophthalmic Surg; 1989 Jul; 20(7):480-5. PubMed ID: 2779951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical performance of monofilament synthetic absorbable sutures.
    Rodeheaver GT; Powell TA; Thacker JG; Edlich RF
    Am J Surg; 1987 Nov; 154(5):544-7. PubMed ID: 3118727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Torsion of monofilament and polyfilament sutures under tension decreases suture strength and increases risk of suture fracture.
    Hennessey DB; Carey E; Simms CK; Hanly A; Winter DC
    J Mech Behav Biomed Mater; 2012 Aug; 12():168-73. PubMed ID: 22762905
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the fracture morphology of polyamide, polyester, polypropylene, and silk sutures before and after implantation in vivo.
    Karaca E; Hockenberger AS
    J Biomed Mater Res B Appl Biomater; 2008 Nov; 87(2):580-9. PubMed ID: 18506829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breaking strength and diameter of absorbable sutures after in vivo exposure in the rat.
    Outlaw KK; Vela AR; O'Leary JP
    Am Surg; 1998 Apr; 64(4):348-54. PubMed ID: 9544148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in-vitro study of the effect of buffer on the degradation of poly(glycolic acid) sutures.
    Chu CC
    J Biomed Mater Res; 1981 Jan; 15(1):19-27. PubMed ID: 6294120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of absorbable and nonabsorbable sutures for intradermal skin closure in cats.
    Papazoglou LG; Tsioli V; Papaioannou N; Georgiadis M; Savvas I; Prassinos N; Kouti V; Bikiaris D; Hadzigiannakis C; Zavros N
    Can Vet J; 2010 Jul; 51(7):770-2. PubMed ID: 20885834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison between absorbable and nonabsorbable, monofilament sutures for end-to-end arterial anastomoses in growing pigs.
    Steen S; Andersson L; Löwenhielm P; Stridbeck H; Walther B; Holmin T
    Surgery; 1984 Feb; 95(2):202-8. PubMed ID: 6420918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.