BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 11505698)

  • 1. [Adenine reutilization as a cause of increased ATP concentration in erythrocytes of patients with chronic renal failure].
    Słomińska E; Szołkiewicz M; Rutkowski B; Swierczyński J
    Pol Arch Med Wewn; 2001 Jan; 105(1):45-50. PubMed ID: 11505698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Renal replacement therapy results in correction of plasma and erythrocyte adenine nucleotide abnormalities in patients with chronic renal failure].
    Słominska E; Szolkiewicz M; Rutkowski B; Swierczyński J
    Pol Arch Med Wewn; 2001 Dec; 106(6):1145-51. PubMed ID: 12026534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased rate of adenine incorporation into adenine nucleotide pool in erythrocytes of patients with chronic renal failure.
    Marlewski M; Smolenski RT; Szolkiewicz M; Aleksandrowicz Z; Rutkowski B; Swierczynski J
    Nephron; 2000 Nov; 86(3):281-6. PubMed ID: 11096284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High plasma adenine concentration in chronic renal failure and its relation to erythrocyte ATP.
    Slominska EM; Szolkiewicz M; Smolenski RT; Rutkowski B; Swierczynski J
    Nephron; 2002 Jun; 91(2):286-91. PubMed ID: 12053067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated degradation of adenine nucleotide in erythrocytes of patients with chronic renal failure.
    Marlewski M; Smolenski RT; Szolkiewicz M; Aleksandrowicz Z; Rutkowski B; Swierczynski J
    Mol Cell Biochem; 2000 Oct; 213(1-2):93-7. PubMed ID: 11129963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disturbances of purine nucleotide metabolism in uremia.
    Rutkowski B; Swierczynski J; Slominska E; Szolkiewicz M; Smolenski RT; Marlewski M; Butto B; Rutkowski P
    Semin Nephrol; 2004 Sep; 24(5):479-83. PubMed ID: 15490415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Concentration of adenine nucleotides in blood of predialysis patients with chronic renal failure].
    Bułło B; Marlewski M; Manitius J; Smoleński RT; Rutkowski B
    Pol Arch Med Wewn; 1995 Nov; 94(5):389-94. PubMed ID: 8833935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Adenine nucleotide- and 2,3-diphosphoglycerate metabolism in human erythrocytes in chronic kidney insufficiency].
    Mücke D; Strauss D; Eschke P; Gross J; Grossmann P; Daniel A
    Z Urol Nephrol; 1977 Jan; 70(1):39-49. PubMed ID: 848144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some aspects of adenosine triphosphate synthesis from adenine and adenosine in human red blood cells.
    Whittam R; Wiley JS
    J Physiol; 1968 Dec; 199(2):485-94. PubMed ID: 5723519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of glucose in dialyzing fluid on purine concentrations in hemodialyzed patients with chronic renal failure.
    Bober J; Kedzierska K; Safranow K; Kwiatkowska E; Jakubowska K; Herdzik E; Dołegowska B; Domański L; Ciechanowski K
    Nephron Clin Pract; 2003; 95(1):c31-6. PubMed ID: 14520019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated plasma adenine nucleotide levels in chronic renal failure and their possible significance.
    Moss AH; Solomons CC; Alfrey AC
    Proc Clin Dial Transplant Forum; 1979; 9():184-8. PubMed ID: 399505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of adenine nucleotide concentrations in human plasma by erythrocytes and endothelial cells.
    Mattig S; Knoefler R; Deussen A
    Thromb Res; 2003 Jun; 110(4):195-202. PubMed ID: 14512081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine metabolism in erythrocytes of patients with Duchenne muscular dystrophy.
    Frass M; Toifl K; Leixnering W
    Eur Neurol; 1983; 22(5):380-4. PubMed ID: 6628465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Metabolism of adenosine, AMP and ATP in rats].
    Dmitrenko NP; Goroshnikova TV
    Ukr Biokhim Zh (1978); 1987; 59(4):52-8. PubMed ID: 2820100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel nucleotide found in human erythrocytes, 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside triphosphate.
    Slominska EM; Carrey EA; Foks H; Orlewska C; Wieczerzak E; Sowinski P; Yacoub MH; Marinaki AM; Simmonds HA; Smolenski RT
    J Biol Chem; 2006 Oct; 281(43):32057-64. PubMed ID: 16920716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte nitric oxide metabolism in patients with chronic renal failure.
    Durak I; Oztürk HS; Elgün S; Cimen MY; Yalçin S
    Clin Nephrol; 2001 Jun; 55(6):460-4. PubMed ID: 11434357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine and adenosine salvage pathways in erythrocytes and the role of S-adenosylhomocysteine hydrolase. A theoretical study using elementary flux modes.
    Schuster S; Kenanov D
    FEBS J; 2005 Oct; 272(20):5278-90. PubMed ID: 16218958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic renal failure is associated with increased tissue deposition of lanthanum after 28-day oral administration.
    Lacour B; Lucas A; Auchère D; Ruellan N; de Serre Patey NM; Drüeke TB
    Kidney Int; 2005 Mar; 67(3):1062-9. PubMed ID: 15698446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Calpain-calpastatin system in erythrocytes of children with chronic renal failure].
    Polak-Jonkisz D; Purzyc L; Zwolińska D; Musiał K
    Przegl Lek; 2006; 63 Suppl 3():156-8. PubMed ID: 16898518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of exogenous adenine in a pyruvate kinase-deficient patient.
    Lappin TR; Elder GE; Savage GA; Bridges JM
    Scand J Clin Lab Invest; 1983 Apr; 43(2):111-8. PubMed ID: 6612220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.