These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 11505905)
1. Regional background monitoring of PBT compounds. The comparison of the results from measurements and modelling. Holoubek I; Ansorgová A; Shatalov V; Dutchak S; Kohoutek J Environ Sci Pollut Res Int; 2001; 8(3):201-11. PubMed ID: 11505905 [TBL] [Abstract][Full Text] [Related]
2. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic.1) Part I. Ambient air and wet deposition 1996-2005. Holoubek I; Klánová J; Jarkovský J; Kohoutek J J Environ Monit; 2007 Jun; 9(6):557-63. PubMed ID: 17554427 [TBL] [Abstract][Full Text] [Related]
3. Global-scale environmental transport of persistent organic pollutants. Koziol AS; Pudykiewicz JA Chemosphere; 2001 Dec; 45(8):1181-200. PubMed ID: 11695632 [TBL] [Abstract][Full Text] [Related]
4. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic.2) Part II. Aquatic and terrestrial environments 1996-2005. Holoubek I; Klánová J; Jarkovský J; Kubík V; Helesic J J Environ Monit; 2007 Jun; 9(6):564-71. PubMed ID: 17554428 [TBL] [Abstract][Full Text] [Related]
5. Kosetice, Czech Republic--ten years of air pollution monitoring and four years of evaluating the origin of persistent organic pollutants. Dvorska A; Lammel G; Klanova J; Holoubek I Environ Pollut; 2008 Nov; 156(2):403-8. PubMed ID: 18495308 [TBL] [Abstract][Full Text] [Related]
6. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Matthies M; Solomon K; Vighi M; Gilman A; Tarazona JV Environ Sci Process Impacts; 2016 Sep; 18(9):1114-28. PubMed ID: 27477634 [TBL] [Abstract][Full Text] [Related]
7. Introduction to special series: science-based guidance and framework for the evaluation and identification of PBTs and POPs. Klecka GM; Muir DC; Dohmen P; Eisenreich SJ; Gobas FA; Jones KC; Mackay D; Tarazona JV; van Wijk D Integr Environ Assess Manag; 2009 Oct; 5(4):535-8. PubMed ID: 19552505 [TBL] [Abstract][Full Text] [Related]
8. Environmental applications of membrane introduction mass spectrometry. Ketola RA; Kotiaho T; Cisper ME; Allen TM J Mass Spectrom; 2002 May; 37(5):457-76. PubMed ID: 12112751 [TBL] [Abstract][Full Text] [Related]
9. Selected persistent organic pollutants (POPs) in the Italian environment. Miniero R; De Felip E; Magliuolo M; Ferri F; Di Domenico A Ann Ist Super Sanita; 2005; 41(4):487-92. PubMed ID: 16569918 [TBL] [Abstract][Full Text] [Related]
10. BETR North America: a regionally segmented multimedia contaminant fate model for North America. MacLeod M; Woodfine DG; Mackay D; McKone T; Bennett D; Maddalena R Environ Sci Pollut Res Int; 2001; 8(3):156-63. PubMed ID: 11505899 [TBL] [Abstract][Full Text] [Related]
11. Modeling the effect of snow and ice on the global environmental fate and long-range transport potential of semivolatile organic compounds. Stocker J; Scheringer M; Wegmann F; Hungerbuhler K Environ Sci Technol; 2007 Sep; 41(17):6192-8. PubMed ID: 17937301 [TBL] [Abstract][Full Text] [Related]
12. Are there other persistent organic pollutants? A challenge for environmental chemists. Muir DC; Howard PH Environ Sci Technol; 2006 Dec; 40(23):7157-66. PubMed ID: 17180962 [TBL] [Abstract][Full Text] [Related]
13. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model. Prevedouros K; MacLeod M; Jones KC; Sweetman AJ Environ Pollut; 2004; 128(1-2):251-61. PubMed ID: 14667732 [TBL] [Abstract][Full Text] [Related]
14. Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation. Lamon L; Dalla Valle M; Critto A; Marcomini A Environ Pollut; 2009 Jul; 157(7):1971-80. PubMed ID: 19272683 [TBL] [Abstract][Full Text] [Related]
15. [Chemicals in ecosystems. Inventory, evaluation and application of distribution models]. Figge K; Klahn J; Koch J Schriftenr Ver Wasser Boden Lufthyg; 1985; 61():1-234. PubMed ID: 4048872 [No Abstract] [Full Text] [Related]
16. A regionally segmented national scale multimedia contaminant fate model for Canada with GIS data input and display. Woodfine D; MacLeod M; Mackay D Environ Pollut; 2002; 119(3):341-55. PubMed ID: 12166668 [TBL] [Abstract][Full Text] [Related]
17. Man-made chemicals found in remote areas of the world: the experimental definition for POPs. Ballschmite K; Hackenberg R; Jarman WM; Looser R Environ Sci Pollut Res Int; 2002; 9(4):274-88. PubMed ID: 12214720 [TBL] [Abstract][Full Text] [Related]
18. Identification of Potential PBT/POP-Like Chemicals by a Deep Learning Approach Based on 2D Structural Features. Sun X; Zhang X; Muir DCG; Zeng EY Environ Sci Technol; 2020 Jul; 54(13):8221-8231. PubMed ID: 32484664 [TBL] [Abstract][Full Text] [Related]
19. Soil burdens of persistent organic pollutants--their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Holoubek I; Dusek L; Sánka M; Hofman J; Cupr P; Jarkovský J; Zbíral J; Klánová J Environ Pollut; 2009 Dec; 157(12):3207-17. PubMed ID: 19524339 [TBL] [Abstract][Full Text] [Related]
20. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data. Sweetman AJ; Valle MD; Prevedouros K; Jones KC Chemosphere; 2005 Aug; 60(7):959-72. PubMed ID: 15992603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]