BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11506012)

  • 1. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense.
    Whiting SN; Leake JR; McGrath SP; Baker AJ
    Environ Sci Technol; 2001 Aug; 35(15):3237-41. PubMed ID: 11506012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens.
    Whiting SN; de Souza MP; Terry N
    Environ Sci Technol; 2001 Aug; 35(15):3144-50. PubMed ID: 11505990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens.
    Kozhevnikova AD; Seregin IV; Erlikh NT; Shevyreva TA; Andreev IM; Verweij R; Schat H
    New Phytol; 2014 Jul; 203(2):508-519. PubMed ID: 24750120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils.
    Keller C; Hammer D
    Environ Pollut; 2004 Sep; 131(2):243-54. PubMed ID: 15234091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens.
    Guimarães MA; Gustin JL; Salt DE
    New Phytol; 2009 Oct; 184(2):323-329. PubMed ID: 19656301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc Isotope Fractionation in the Hyperaccumulator Noccaea caerulescens and the Nonaccumulating Plant Thlaspi arvense at Low and High Zn Supply.
    Tang YT; Cloquet C; Deng TH; Sterckeman T; Echevarria G; Yang WJ; Morel JL; Qiu RL
    Environ Sci Technol; 2016 Aug; 50(15):8020-7. PubMed ID: 27359107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure.
    Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens.
    Lasat MM; Pence NS; Garvin DF; Ebbs SD; Kochian LV
    J Exp Bot; 2000 Jan; 51(342):71-9. PubMed ID: 10938797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations.
    Delorme TA; Gagliardi JV; Angle JS; Chaney RL
    Can J Microbiol; 2001 Aug; 47(8):773-6. PubMed ID: 11575505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.
    Milner MJ; Kochian LV
    Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in thlaspi caerulescens.
    Lasat MM; Baker AJ; Kochian LV
    Plant Physiol; 1998 Nov; 118(3):875-83. PubMed ID: 9808732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.
    Luo YM; Christie P; Baker AJ
    Chemosphere; 2000 Jul; 41(1-2):161-4. PubMed ID: 10819195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time.
    Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B
    Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: results from an isotopic dilution study.
    Hammer D; Keller C; McLaughlin MJ; Hamon RE
    Environ Pollut; 2006 Oct; 143(3):407-15. PubMed ID: 16457917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.
    Deng TH; Cloquet C; Tang YT; Sterckeman T; Echevarria G; Estrade N; Morel JL; Qiu RL
    Environ Sci Technol; 2014 Oct; 48(20):11926-33. PubMed ID: 25222693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.
    Saison C; Schwartz C; Morel JL
    Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium uptake by a hyperaccumulator and three Pennisetum grasses with associated rhizosphere effects.
    Zheng R; Teng W; Hu Y; Hou X; Shi D; Tian X; Scullion J; Wu J
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):1845-1857. PubMed ID: 34363165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens.
    Papoyan A; Piñeros M; Kochian LV
    New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens.
    Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H
    New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens.
    Monsant AC; Tang C; Baker AJ
    Chemosphere; 2008 Oct; 73(5):635-42. PubMed ID: 18752830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.